LÖSNINGAR

INTEGRATIONSTEORI (5p)

 $(\mathbf{GU}[MAF440], \mathbf{CTH}[TMV100])$

Dag, tid: 5 februari 2005 fm

Hjälpmedel: Inga.

Notation: m_n denotes Lebesgue measure on \mathbf{R}^n , m_1 is written m, and $m_{a,b}$ denotes Lebesgue measure on the compact interval [a,b]

1. The function $f: \mathbf{R} \to [0, \infty[$ is Lebesgue measurable and $\int_{\mathbf{R}} f dm = 1$. Determine all non-zero real numbers α such that $\int_{\mathbf{R}} h dm < \infty$, where

$$h(x) = \sum_{n=0}^{\infty} f(\alpha^n x + n), \ x \in \mathbf{R}.$$

Solution. Since the map $x \to f(\alpha^n x + n)$ is Lebesgue measurable, the function h is $(\mathcal{R}^-, \mathcal{R}_{0,\infty})$ -measurable and the Beppo-Levi Theorem yields

$$\int_{\mathbf{R}} h(x)dx = \sum_{n=0}^{\infty} \int_{\mathbf{R}} f(\alpha^n x + n)dx.$$

Here

$$\int_{\mathbf{R}} f(\alpha^n x + n) dx = \mid \alpha \mid^{-n} \int_{\mathbf{R}} f(y) dy = \mid \alpha \mid^{-n}$$

and

$$\int_{\mathbf{R}} h(x)dx = \sum_{n=0}^{\infty} |\alpha|^{-n}.$$

Thus $\int_{\mathbf{R}} h(x)dx < \infty$ if and only if $|\alpha| > 1$.

2. If $k = (k_1, ..., k_n) \in \mathbf{N}_+^n$, set

$$e_k(x) = \prod_{i=1}^n \sin k_i x_i, \ x = (x_1, ..., x_n) \in \mathbf{R}^n$$

and $|k| = (\sum_{i=1}^{n} k_i^2)^{\frac{1}{2}}$. Prove that

$$\lim_{|k| \to \infty} \int_{\mathbf{R}^n} f e_k dm_n = 0$$

for every $f \in L^1(m_n)$.

Solution. Let S denote the set of all $f \in L^1(m_n)$ such that

$$\lim_{|k| \to \infty} \int_{\mathbf{R}^n} f e_k dm_n = 0.$$

Clearly, S is a vector subspace of $L^1(m_n)$. Moreover, S is closed in $L^1(m_n)$. To see this let $f \in L^1(m_n)$, $f_j \in S$, and $f_j \to f$ in $L^1(m_n)$ as $j \to \infty$. Then

$$\left| \int_{\mathbf{R}^n} f e_k dm_n \right| \leq \int_{\mathbf{R}^n} \left| f - f_j \right| e_k \left| dm_n + \left| \int_{\mathbf{R}^n} f_j e_k dm_n \right|$$

and

$$\left| \int_{\mathbf{R}^n} f e_k dm_n \right| \leq \parallel f - f_j \parallel_1 + \left| \int_{\mathbf{R}^n} f_j e_k dm_n \right|.$$

Thus

$$\limsup_{|k|\to\infty} |\int_{\mathbf{R}^n} f e_k dm_n | \le ||f - f_j||_1$$

and by letting $j \to \infty$ we have

$$\lim_{|k| \to \infty} \int_{\mathbf{R}^n} f e_k dm_n = 0.$$

Accordingly from this, $f \in S$ and it follows that S is closed.

Next let $I = [a_1, b_1] \times ... \times [a_n, b_n]$ be a bounded open n-cell in \mathbb{R}^n . Then

$$\left| \int_{\mathbf{R}^n} \chi_I e_k dm_n \right| = \left| \prod_{i=1}^n \frac{\cos k_i a_i - \cos k_i b_i}{k_i} \right|$$

$$\leq \frac{2^n}{k_1 \cdot \ldots \cdot k_n} \leq \frac{2^n}{\max_{1 \leq i \leq n} k_i} \leq \frac{n2^n}{\mid k \mid} \to 0$$

as $|k| \to \infty$ and we conclude that $\chi_I \in S$. Since S is closed and the linear span of the functions χ_I , where I is an open bounded n-cell, is dense in $L^1(m_n)$ it follows that $S = L^1(m_n)$.

3. Let (X, \mathcal{M}, μ) be a σ -finite positive measure space and suppose λ and τ are two probability measures defined on the σ -algebra \mathcal{M} such that $\lambda << \mu$ and $\tau << \mu$. Prove that

$$\sup_{A \in \mathcal{M}} |\lambda(A) - \tau(A)| = \frac{1}{2} \int_X |\frac{d\lambda}{d\mu} - \frac{d\tau}{d\mu}| d\mu.$$

Solution. Set

$$f = \frac{d\lambda}{d\mu} - \frac{d\tau}{d\mu}$$

and note that $f \in L^1(\mu)$. Now

$$\int_{X} f d\mu = \lambda(X) - \tau(X) = 0$$

and we get

$$\int_X f^+ d\mu = \int_X f^- d\mu.$$

Thus

$$\int_{X} |f| d\mu = \int_{X} f^{+} d\mu + \int_{X} f^{-} d\mu = 2 \int_{X} f^{+} d\mu.$$

Furthermore,

$$\lambda(A) - \tau(A) = \int_A f^+ d\mu - \int_A f^- d\mu \le \int_A f^+ d\mu \le \int_Y f^+ d\mu = \frac{1}{2} \int_Y |f| d\mu$$

where equality occurs if

$$A = \{f^+ > 0\}.$$

In a similar way,

$$\tau(A) - \lambda(A) = \int_{A} f^{-} d\mu - \int_{A} f^{+} d\mu \le \int_{A} f^{-} d\mu \le \int_{X} f^{-} d\mu = \frac{1}{2} \int_{X} |f| d\mu$$

(where equality occurs if $A = \{f^- > 0\}$). Thus

$$\sup_{A \in \mathcal{M}} \mid \lambda(A) - \tau(A) \mid = \frac{1}{2} \int_{X} \mid \frac{d\lambda}{d\mu} - \frac{d\tau}{d\mu} \mid d\mu.$$

- 4. Suppose (X, \mathcal{M}, μ) is a positive measure space and $w: X \to [0, \infty]$ a measurable function.
 - a) Set

$$\nu(A) = \int_A w d\mu, \ A \in \mathcal{M}.$$

Prove that ν is a positive measure.

b) Prove that

$$\mu(w \ge \alpha) \le \frac{1}{\alpha} \int_X w d\mu, \ 0 < \alpha < \infty.$$

5. Suppose $a, b \in \mathbf{R}$, a < b, and that $F : [a, b] \to \mathbf{R}$ is absolutely continuous. Prove that there exists a function $f \in L^1(m_{a,b})$ such that

$$F(x) = F(a) + \int_{a}^{x} f(t)dt, \ a \le x \le b.$$