2011-05-25, Tentamen i
Hållfasthetslära och maskinelement för I3, TME060

- Tid: 8.30-12.30 Lokal: "Maskin"-salar
- Ansvarig lärare: Göran Brännare, tel 7721364
- Hjälpmedel
 - Publicerade matematiska, fysikaliska och tekniska formelsamlingar.
 - "Handbok och formelsamling i hållfasthetslära", Inst. för hållfasthetslära, KTH, valfri upplaga
 - "Formelsamling i hållfasthetslära", Tillämpad mekanik, Ekh och Hansbo
 - Valfri kalkylator i fickformat med tangentbord och sifferfönster i samma enhet.
 - Ordböcker.
 - "Lärobok i Maskinelement" eller "Kompendium i Maskinelement", Mägi, M., Melkersson, K.
 - Egna anteckningar får finnas på befintliga sidor i "Grundläggande hållfasthetslära" och i "Lärobok i Maskinelement" eller "Kompendium i Maskinelement", dock inga lösta exempel. I övrigt tillåts inga egna anteckningar.

- Resultat: Anslås senast 2011-06-13 på kurshemsidan

- Granskning: 2011-06-13, kl 12-13 vid PPU-labbet

- Betygsgränser: 0-9.5p=underkänt, 10-14.5p= betyg 3, 15-19.5p= betyg 4, 20p- =betyg 5.
Uppgift 1 (5p)
En axelkonstruktion består av två axeldelar av samma material (aluminium) fast med olika tvärsnitt enligt figuren. Båda axeldelarna har cirkulära tvärsnitt; den vänstra delen är solid med diametern $2a$; den högra är ihålig med ytterdiamtern $2a$ och innerdiametern a.

Axeldelarna sammanfogas med en stel skiva som utsätts för det koncentrerade vridande momentet M_o på den stela skivan. *Bestäm maximal skjutspänning i tvärsnitten omedelbart till vänster och till höger om skivan.*

Givna data:
$G_{\text{aluminium}} = 27 \cdot 10^5$ [MPa], $L = 8$ [m], $a = 100$ [mm], $f_0 = 25$ [kN].
Uppgift 2 (5p)
En fast inspänd balk utsätts för en uniformt utbredd last \(q(x) = q_0 \) [kraft/längd] samt en punktlast \(P = q_0 L \) enligt figuren. Balken är inhomogen på så sätt att den byter tvärsnittshöjd på mitten (\(h \) om \(x < \frac{L}{2} \) och \(2h \) om \(x \geq \frac{L}{2} \)).

(a) Bestäm tvärkraften \(T(x) \) och böjmomentet \(M(x) \) för \(0 \leq x \leq L \).

(2p)

(b) Bestäm maximal böjnormalspänning och maximal böjskjuvspänning i balken.

(3p)

Givna data:
\(q_0 = 10 \) [N/mm], \(b = 36 \) [mm], \(h = 52 \) [mm], \(L = 2 \) [m].
Uppgift 3 (5p)
Två lika stora block är exakt inpassade utan friktion mellan väggar som kan betraktas som oändligt styva. Blocken är linjärt elastiska med materialegenskaper enligt figuren, \((E, \nu)\) respektive \((E, \nu_2 = 0.5)\). Båda blocken belastas med trycket \(p\). Blocken har fria sidor i \(z\)-riktningen.

(a) Bestäm samtliga normalspänningar i båda blocken.
(3p)

(b) Bestäm skillnaden i vertikal normallösning, \(\Delta \varepsilon_y = \varepsilon_y^{(2)} - \varepsilon_y^{(1)}\) mellan de båda blocken.
(2p)
Uppgift 4 (5 poäng)

Data:
- $F_{ax} = 8000$ N
- $M_v = 500$ Nm
- $l = 60$ mm
- $d = 60$ mm
- $D = 100$ mm
- $\mu = 0,1$
- $\sigma_s = 600$ MPa

Uppgift 5 (5 poäng)

Fjädringen i en personbil består av fyra lika cylindriska skruvfjädrar med medeldiameter 150 mm och tråddiameter 12,5 mm. Fjädrarna har 7,5 verksamma varv som i obelastat tillstånd har längden 400 mm.

I monterat tillstånd kommer fjädrarna att hoptryckas på grund av bilens tyngd som kan anses jämnt fördelad på de fyra hjulen.

Beräkna hur mycket fjädrarna kan tillåtas fjädra under färd om bilens massa är 800 kg. Det finns därvid inget krav på "luft mellan fjädertråven". Den maximala effektivskjuvspännningen får ej överstiga 670 MPa då hänsyn tas till fjäderträdens krökning.