TMA970

Matematik Chalmers

Tentamensskrivning i Inledande matematisk analys F / TM
Datum: 2025-10-29, kl. 8:30 — 12:30.

Hjalpmedel: Inga

Telefonvakt: Jana Madjarova, ankn. 3531

1. Avgor om integralerna nedan konvergerar eller divergerar. Ge endast svar, d.v.s.
konvergent / divergent.

(a) /j\;%dx; (b) /Og\/%; (©) /01(63$—1)1n(x2)dx.

Avgor om pastaendena nedan dr sanna eller falska. Ge endast svar, det vill séga
sant /falskt.

Om funktionen f dr definierad och deriverbar i (a,b), sa foljer att

(d) funktionen f’ &r kontinuerlig i (a, b);

(e) funktionen f” har en primitiv i (a,b);

(f) funktionen f har en primitiv i (a,b).

(Varje rétt svar ger 1p, varje fel svar ger —1p, inget svar ger Op; hela uppgiften ger
minst Op.)

2. Bestam gransvirdena (L'Hospitals regel och Taylorutvecklingar far ej anvindas)

1 i —
(a) lim =T SREZERL g (3p): (b) lim_arceos(x + vk T x)  (4p)

z—0 1 4 sin pzr — cos px

3. Rita grafen till funktionen f(z) = ze . Ange asymptoter, lokala extrema,
inflexionspunkter etc. (6p)

4.(a) Bestdm en primitiv funktion till f(z) =In(x + Va2 +1). (3p)
In2

(b) Berdkna ver —1ldx. (3p)

0

5. Visa att

(:c”leals)(m = (_1)716%, Vn € N. (6p)

In—l—l

6. For funktionen f : R — R giller att det finns tva positiva tal k£ och 7" sadana
att f(x +T) = kf(x) for alla reella x. Visa att det finns ett positivt tal a och en
T-periodisk funktion! ¢ sddana att f(x) = a®¢(z) for alla reella z. (6p)

ldvs. oz +T)=¢(x) Vz €R



7. Visa att foljden {a,}>2,, dér

(1)
ap = 1+ = )
n

ar vixande och uppat begrinsad. Definiera talet e. (7p)

8. Formulera och bevisa integralkalkylens medelvirdessats. (6p)

Betygsgréinser: 20-29p ger betyget 3; 30-39p ger betyget 4; 40p+ ger betyget 5.

JIM
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