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Question 1(3p)

(Unconstrained optimization)

Let f : R2 → R be given by

f(x) = x21 − x1x2 − x22 + 2 sin(x1) +
1

8
x42

and consider the unconstrained optimization problem

minimize f(x).

Is x(1) = [0, 0]T a locally optimal solution to the problem? Is x(2) = [0, 2]T a locally
optimal solution to the problem? Why or why not? Motivate carefully.

Question 2

(the Karush-Kuhn-Tucker conditions)

Consider the problem

(P)

{
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

where f : Rn → R and gi : Rn → R for i = 1, . . . ,m.

a) State the Karush-Kuhn-Tucker (KKT) conditions for the problem (P).(1p)

b) For this subquestion, assume that x1 is a locally optimal solution to (P), and(1p)
that the linear independence constraint qualifier holds in x1. In such a case, is it
guaranteed that x(1) satisfies the KKT conditions? Why or why not? Motivate
carefully.

c) For this subquestion, assume instead that both x(2) and x(3) satisfy the KKT con-(1p)
ditions for (P), and that these two points are the only KKT points for the prob-
lem. Moreover, assume that Abadie’s constraint qualifier holds in both points,
and that the problem has at least one globally optimal solution. In such a case, is
it guaranteed that at least one of the two points is the globally optimal solution
to (P)? Why or why not? Motivate carefully.
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Question 3

(LP duality)

Consider the linear programming problem

minimize x1 + 2x2 − x3

subject to x1 − 2x3 ≤ 1

− x2 + 2x3 ≤ 0

x1 + 3x2 + 5x3 = 5

x1 ≥ 0, x3 ≤ 0.

a) State the dual problem.(2p)

b) An optimal solution to the primal problem is(1p)

x∗ =

05
3

0

 .
Give an optimal solution to the dual problem.

Question 4

(Lagrangian duality and global optimality conditions)

Consider the problem

minimize − 2x21 − x22,

subject to x21 + x22 ≤ 1,

− x2 ≤ 0.

a) Perform a Lagrange relaxation of both constraints, and derive the dual function(2p)
q(µ) explicitly.

Hint: For X := R2, an explicit solution to minx∈X L (x, µ) can be found in this
case as a function of µ .

b) Using the computations in a), withX := R2, verify that x̂ = [1, 0]T and µ̂ = [2, 0]T(1p)
satisfy the global optimality conditions.
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Question 5

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short (but complete) motivation.

a) Let f : R3 → R be defined by(1p)

f(x) = (1− x1x2)
2 + x21 + (x21 + x3)

2,

and let S = {x ∈ R3 | x21 + x22 + x23 ≤ 1}.
Claim: The optimization problem

inf f(x)

subject to x ∈ S

attains a global minimum.

b) Let f : R2 → R be defined by(1p)

f(x) = x21 − x1x2 + x22.

Claim: p = [0, 1]T is a subgradient in the point x̃ = [1, 1]T .

c) Let f : R2 → R and g : R2 → R be defined by(1p)

f(x) = x41 − x1x2 + x22,

g(x) = cos(x1) + x22 − 9,

respectively, and consider the problem{
minimize f(x)

subject to g(x) ≤ 0.

Claim: Newton’s method, as taught in the course, can be used to solve this
optimization problem.
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Question 6(3p)

(Exterior penalty method)

Consider the problem 
minimize f(x),

subject to h(x) = 0,

x ∈ R2,

where

f(x) = −x21 + x22,

h(x) = x31 − x2.

We will consider the exterior penalty method with penalty function ψ(s) = s2.

State the penalty transformed problem that needs to be solved in each iteration of
the exterior penalty method. Find all stationary points of the penalty transformed
problem, that is, compute the stationary points x∗(ν) as functions of ν. Finally, for
the stationary points, compute limν→∞ x∗(ν) . State what you know about these limits.

Hint: An equation of the form z(z4 − a) = 0, where a > 0, has three real solutions:
z = 0 and z = ±a1/4.

Question 7

(Separation Theorem)

The separation theorem is an important theorem in convex analysis and optimization.
Somewhat informally, it states that for a closed and convex set C ⊂ Rn which is
nonempty, if we take a point that is not in C, we can find a hyperplane that separates
the space into two halfspaces so that the point is on one side of the hyperplane and C
is on the other side of the hyperplane.

a) Give the formal statement of the separation theorem.(1p)

b) Prove the separation theorem. Do so using basic results from the course. If(2p)
you rely on other results when performing your proof of the theorem, then those
results must be stated explicitly; they may however be utilized without proof.
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Question 1(3p)

(Unconstrained optimization)

We start by computing the gradient and the Hessian of f . This gives

∇f(x) =
[
2x1 − x2 + 2 cos(x1)
−x1 − 2x2 +

1
2
x32

]
, ∇2f(x) =

[
2− 2 sin(x1) −1

−1 −2 + 3
2
x22

]
.

For x(1), we get

∇f(x(1)) =
[
0− 0 + 2
−0− 0 + 0

]
=

[
2
0

]
̸=

[
0
0

]
,

and hence x(1) is not a locally optimal solution.

For x(2), we get

∇f(x(2)) =
[
0− 2 + 2
−0− 4 + 4

]
=

[
0
0

]
,

and x(2) could therefore be a locally optimal solution. To verify if it is, we check the
sufficient condition for locally optimality: that the Hessian in the point is positive
definite. To this end,

∇2f(x(2)) =

[
2− 0 −1
−1 −2 + 3

2
22

]
=

[
2 −1
−1 4

]
.

Computing the eigenvalues of this matrix, we find that λ = 3±
√
2 > 0 and hence the

matrix is positive definite. Therefore, x(2) is a locally optimal solution.

Note: The positive definiteness of the matrix can also be asserted in other ways. For example,

by noting that the matrix is strictly diagonally dominant. Or by noting that the leading

principles minors are all positive.
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Question 2

(the Karush-Kuhn-Tucker conditions)

a) For feasible points x ∈ Rn, i.e., x such that gi(x) ≤ 0, i = 1, . . . ,m, the KKT(1p)
conditions are

∇f(x) +
m∑
i=1

µi∇gi(x) =

0...
0


µi ≥ 0, i = 1, . . . ,m

µigi(x) = 0, i = 1, . . . ,m.

b) Since the LICQ holds, Abadie’s CQ holds. If Abadie’s CQ holds, then KKT(1p)
conditions are necessary conditions for local optimality. Therefore, since x(1) is
assumed to be locally optimal, x(1) is a KKT point.

c) No it is not guaranteed that either x(2) or x(3) is a globally optimal solution. A(1p)
globally optimal solution can be in a point where Abadie’s constraint qualifier
does not hold, and hence does not have to be a KKT point.

Question 3

(LP duality)

a) The dual problem is(2p)

maximize y1 + 5y3

subject to y1 + y3 ≤ 1

− y2 + 3y3 = 2

− 2y1 + 2y2 + 5y3 ≥ −1

y1, y2 ≤ 0.

b) Evaluating the first and second constraint of the primal problem in the point(1p)
x∗, we see that neither of them is active. By complementarity, that means that
for an optimal dual solution we must have y∗1 = y∗2 = 0. Solving the equality
constraint in the dual problem we therefore get y∗3 = 2

3
. It is easily verified that

this is feasible to the two remaining (inequality) constraints in the dual. Since
x∗ and y∗ are feasible in the primal and dual problem, respectively, and since
complementarity holds, we know that they are optimal.
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Question 4

(Lagrangian duality and global optimality conditions)

a) Let X := R2. The dual function q(µ) = infx∈X L (x, µ) is given by(2p)

q(µ) =
min −2x21 − x22 + µ1(x

2
1 + x22 − 1) + µ2(−x2)

subject to x ∈ X

=


−∞ if µ1 < 2,

−µ2
2

4
− 2 if µ1 = 2

− µ2
2

4(µ1−1)
− µ1 if µ1 > 2

where the minimizers of the Lagrangian for µ1 = 2 are attained at x = [a, µ2/2]
T

for any a ∈ R, and for µ1 > 2 at x = [0, µ2/(2(µ1 − 1))]T .

b) Let X := R2, g1(x) = x21 + x22 − 1, and g2(x) = −x2. A point (x∗, µ∗) ∈ R2 × R2(1p)
is said to satisfy the global optimality conditions if

x∗ ∈ argmin
X

L(x, µ∗),

x∗ ∈ X, g1(x
∗) ≤ 0, and g2(x

∗) ≤ 0,

µ∗ ≥ 0,

µ∗
1g1(x

∗) = 0, and µ∗
2g2(x

∗) = 0.

We were told to consider the point x̂ = [1, 0]T and µ̂ = [2, 0]T . From a), we know
that argminX L(x, µ̂) = {x = [a, µ̂2/2]

T | a ∈ R} and thus x̂ ∈ argminX L(x, µ̂).
Moreover, g1(x̂) = 12+02−1 = 0 ≤ 0 and g2(x̂) = −0 = 0 ≤ 0. Next, µ̂1 = 1 ≥ 0
and µ̂2 = 0 ≥ 0. Finally, µ̂1g1(x̂) = 2 · 0 = 0 and µ̂2g2(x̂) = 0 · 0 = 0. This shows
that x̂ = [1, 0]T and µ̂ = [2, 0]T satisfy the global optimality conditions.

Question 5

(True or False)

a) True. f is continuous and S is nonempty, closed, and bounded. So byWeierstrass’(1p)
theorem the problem attains a globally optimal solution.

b) False. Since f is continuously differentiable in x̃, ∂f(x̃) = {∇f(x̃)}. But(1p)

∇f(x) =
[
2x1 − x2
−x1 + 2x2

]
=⇒ ∇f(x̃) =

[
1
1

]
̸=

[
0
1

]
= p.

c) False. Newton’s method, as it is taught in the course, can only be used to solve(1p)
unconstrained problems.
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Question 6(3p)

(Exterior penalty method)

The penalty transformed problem that needs to be solved in each iteration of the
exterior penalty method is

min
x∈R2

f(x)+νψ(h(x)) = min
x∈R2

−x21+x22+ν(x31−x2)2 = min
x∈R2

−x21+x22+νx61−2νx31x2+νx
2
2.

Let Fν(x) := −x21 + x22 + νx61 − 2νx31x2 + νx22 denote the cost function of the penalty
transformed problem. Stationary points to the penalty transformed problem are points
such that ∇Fν(x) = 0.[

0
0

]
= ∇Fν(x) =

[
−2x1 + 6νx51 − 6νx21x2
2x2 − 2νx31 + 2νx2

]
.

The second equation gives that x2 = ν
1+ν

x31, and plugging this into the first equation
gives that

0 = −2x1+6νx51−6νx21
ν

1 + ν
x31 = 2x1

(
−1 + 3νx41 −

3ν2

1 + ν
x41

)
= 2x1

(
3ν

1 + ν
x41 − 1

)
.

The (real) solutions to this equation are x1(ν) = 0, and x1(ν) = ±(1+ν
3ν

)1/4 which means
that the stationary points are

x∗(ν) =

[
0
0

]
, x∗(ν) = ±

[(
1
3

)1/4 (1+ν
ν

)1/4(
1
3

)3/4 ( ν
1+ν

)1/4
]
.

The limit, as ν → ∞, of these points are

lim
ν→∞

[
0
0

]
=

[
0
0

]
, lim

ν→∞
±

[(
1
3

)1/4 (1+ν
ν

)1/4(
1
3

)3/4 ( ν
1+ν

)1/4
]
= ±

[(
1
3

)1/4(
1
3

)3/4
]
.

Since all functions are C1, since ψ′(s) = 2s ≥ 0 for all s ≥ 0, since all of the above
limit points are feasible to the original problem, and since the LICQ holds in all of the
above limit points, we know that they are all KKT points to the original problem (see
Theorem 13.4 in course book).

Question 7

(Separation Theorem)

a) See Theorem 4.29 in the book.(1p)

b) See the proof of Theorem 4.29 in the book.(2p)


