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Question 1(3p)

(Unconstrained optimization - Newton’s method with Levenberg-Marquardt modification)

Let f : R2 → R be given by f(x) = 1
6
x31 +

1
6
x32 − 2x1 − x2 − x1x2 and consider the

unconstrained optimization problem

minimize f(x).

Starting in the point x0 = [0, 0]T , perform one iteration of Newton’s method with the
Levenberg-Marquardt modification. That is, compute the next point x1.

When performing the iteration, you have to:

• use, as modification parameter, the smallest integer γ ≥ 0 such that the condi-
tions needed are fulfilled.

• use exact line search when computing the step length α.

Hint 1: 1
6

(
5
3

)3
+ 1

6

(
4
3

)3
= 7

6
.

Hint 2: For g : R → R, given by g(z) = 7
6
z3 − 20

9
z2 − 14

3
z, the optimal solution to

min g(z) subject to z ≥ 0 is z = 40+2
√
1723

63
. You can use this result directly without

proving it.

Hint 3: You may find the following identity useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Question 2

(Linear programming)

a) Consider the linear programming problem(2p)

minimize 2x1 + x2 − x3 + 3x4

subject to x2 − 2x3 + 4x4 ≤ 1

− x1 + x2 + 2x3 ≤ 1

x1, x2, x3, x4 ≥ 0.

Solve the problem using the Simplex method. Start with x2 and x3 as basic
variables.

b) If you find that an optimal solution exists, then use your calculations to de-(1p)
cide whether it is unique or not. If the problem is unbounded, then use your
calculations to specify a ray of unboundedness of the objective value.
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Question 3

(global convergence of exterior penalty method)

Consider the problem

(P)


minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ,

x ∈ Rn,

and let

S = {x ∈ Rn | gi(x) ≤ 0, for i = 1, . . . ,m, and hj(x) = 0, for j = 1, . . . , ℓ}.

Also consider the transformed problem

(Pν)

{
minimize f(x) + νχ̌S(x),

subject to x ∈ Rn,

where

χ̌S(x) =
m∑
i=1

ψ(max{0, gi(x)}) +
ℓ∑

j=1

ψ(hj(x)).

a) Define R+ := {x ∈ R | x ≥ 0}. What condition must the function ψ : R → R+(1p)
satisfy for us to call (Pν) an exterior penalty transformation of (P)?

b) A function ψ : R → R+ that fulfills the conditions asked for in part a) is called(2p)
an exterior penalty function.

Prove the following theorem. Do so using basic results from the course. If you
rely on other results when performing your proof of the theorem, then those
results must be stated explicitly; they may however be utilized without proof.

THEOREM: Let ψ be an exterior penalty function, and assume that (P) has
at least one globally optimal solution. For each value of ν, let x∗ν be a globally
optimal solution to (Pν). Then every limit point of the sequence {x∗ν}, ν → ∞,
is a globally optimal solution to (P).

Hint: The following result might be useful. You may use it without proving it.

LEMMA: Let x∗ν1 and x∗ν2 be globally optimal to (Pν) for penalty parameters ν1
and ν2, respectively. If ν1 ≤ ν2, then f(x

∗
ν1
) ≤ f(x∗ν2).
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Question 4

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short (but complete) motivation.

a) Let f : R2 → R be given by(1p)

f(x) = x1x2 − ex2 .

Claim: The point ([3, 1]T , 0) belongs to the epigraph of f , that is, ([3, 1]T , 0) ∈
epi f ⊂ R2 × R.

b) Let g1 : R2 → R and g2 : R2 → R be defined by(1p)

g1(x) = x21 + x22,

g2(x) = −(x1 − 2)2 − (x2 − 2)2 + 1,

respectively, and let S = {x ∈ R2 | gi(x) ≤ 0 for i = 1, 2}.
Claim: The set S is convex.

c) Consider the problem(1p)

(P)

{
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

where f : Rn → R and gi : Rn → R for i = 1, . . . ,m are all convex functions.
Assume that Slater’s constraint qualifier holds for (P), and that x∗ is a KKT
point. That means that x∗ is a globally optimal solution to (P).

Claim: If gk(x
∗) = 0 (that is, constraint k is active), but the corresponding

multiplier in the KKT system is equal to zero (that is, µk = 0), then x∗ is also
globally optimal to the problem

(P’)

{
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , k − 1, k + 1, . . . ,m.
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Question 5

(Lagrangian duality and global optimality conditions)

Consider the problem

minimize x31 + x2,

subject to x21 − x2 ≤ 0,

x1 ≥ 1,

0 ≤ x2 ≤ 10.

a) Perform a Lagrange relaxation of the first constraint, that is, of the constraint(2p)
x21 − x2 ≤ 0, with a multiplier µ ≥ 0, and derive the dual function q(µ).

Hint: For X := {x ∈ R2 | x1 ≥ 1, 0 ≤ x2 ≤ 10}, an explicit solution to
minx∈X L (x, µ) can be found for each µ in this case.

b) Using the computations in a), with X := {x ∈ R2 | x1 ≥ 1, 0 ≤ x2 ≤ 10}, verify(1p)
that x̂ = [1, 1]T and µ̂ = 1 satisfy the global optimality conditions.

Question 6(3p)

(Feasible directions and constraint qualifiers)

Let gi : R2 → R, for i = 1, 2, be defined by

g1(x) = −x21 + x2,

g2(x) = −x21 − x2,

respectively, and let S = {x ∈ R2 | gi(x) ≤ 0 for i = 1, 2}. Moreover, let x̃ = [0, 0]T .
In this point compute the cone of feasible directions (denoted RS(x̃)), the tangent cone
(TS(x̃)), the inner gradient cone (G̊(x̃)), and the gradient cone (G(x̃)). Does Abadie’s
constraint qualifier hold in x̃?

Hint: The definitions of some of the cones are as follows.

RS(x̃) :={p ∈ R2 \ {0} | ∃ ᾱ > 0 such that x+ αp ∈ S ∀α ∈ [0, ᾱ]},
TS(x̃) :={p ∈ R2 | ∃ sequences {x(k)}∞k=1 ⊂ S and {λ(k)}∞k=1 ⊂ (0,∞) such that

lim
k→∞

x(k) = x̃ and lim
k→∞

λ(k)(x(k) − x̃) = p}

G̊(x̃) :={p ∈ R2 | ∇gi(x̃)Tp < 0 for all i such that gi(x̃) = 0}.

Moreover, it always holds that cl(RS(x̃)) ⊂ TS(x̃) where cl denotes the closure of a set.
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Question 7

(Choice of algorithm)

In each of the following questions, an optimization problem and a list of algorithms
are given. For each question, state which of the algorithms (as they are taught in the
course) can always be used to solve the type of optimization problem stated. If
none of the algorithms can be used, state this clearly.

a)(1p)

minimize cTx

subject to Ax = b

x ≥ 0,

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm.
Algorithms:

• Exterior penalty method,

• Newton’s method,

• Simplex method.

b)(1p)

minimize xTQx+ cTx

subject to Ax ≤ b,

where Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n and b ∈ Rm, and where A and b are such
that Slater’s constraint qualifier holds for the problem.
Algorithms:

• Interior penalty method,

• Simplex method,

• Steepest descent method.

c)(1p)

maximize q(µ)

subject to µ ≥ 0,

where q(µ) is the Lagrangian dual problem of some nonlinear optimization prob-
lem minimize f(x) subject to gi(x) ≤ 0, for i = 1, . . . ,m, and x ∈ X, obtained
by relaxing the constraints gi(x) ≤ 0, for i = 1, . . . ,m.
Algorithms:

• Gradient projection algorithm,

• Frank-Wolfe method,

• Interior penalty method.

Hint: See Question 5a) on this exam.
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Question 1(3p)

(Unconstrained optimization - Newton’s method with Levenberg-Marquardt modification)

We have that

∇f(x) =
[
1
2
x21 − 2− x2

1
2
x22 − 1− x1

]
, ∇2f(x) =

[
x1 −1
−1 x2

]
and therefore

∇f(x0) =
[
−2
−1

]
, ∇2f(x0) =

[
0 −1
−1 0

]
.

The eigenvalues of ∇2f(x0) are λ = ±1, and therefore γ = 2 is the sought modification
parameter, i.e., the smallest integer such that ∇2f(x0) + γI ≻ 0. The search direction
is found by solving (∇2f(x0) + 2I)p = −∇f(x0), which gives that

p = −
[
2 −1
−1 2

]−1 [−2
−1

]
=

1

3

[
2 1
1 2

] [
2
1

]
=

1

3

[
5
4

]
.

To compute the step length α using exact line search, we have to solve the problem

min
α≥0

f(x0 + αp) = min
α≥0

1

6

(
5

3
α

)3

+
1

6

(
4

3
α

)3

− 2

(
5

3
α

)
−
(
4

3
α

)
−

(
5

3
α

)(
4

3
α

)
= min

α≥0

7

6
α3 − 20

9
α2 − 14

3
α,

where the second equality uses Hint 1 (can also be directly calculated). By Hint 2, we

know that the optimal solution to this problem is α = 40+2
√
1723

63
. This means that

x1 = x0 + αp =

[
0
0

]
+

40 + 2
√
1723

63

1

3

[
5
4

]
=

40 + 2
√
1723

189

[
5
4

]
.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 2

Question 2

(Linear programming)

a) Transforming the problem to standard form gives(2p)

minimize 2x1 + x2 − x3 + 3x4

subject to x2 − 2x3 + 4x4 + s1 = 1

− x1 + x2 + 2x3 + s2 = 1

x1, x2, x3, x4 ≥ 0.

As stated in the problem, we start with x2 and x3 as basic variables.

Iteration 1:
With xB = [x2, x3]

T and xN = [x1, x4, s1, s2]
T ,

B =

[
1 −2
1 2

]
, N =

[
0 4 1 0
−1 0 0 1

]
, cTB =

[
1 −1

]
, cTN =

[
2 3 0 0

]
.

xB = B−1b = [1, 0]T , and this is thus a BFS (as expected). The reduced costs
are

c̃TN =
[
2 3 0 0

]
−

[
1 −1

] 1
4

[
2 2
−1 1

] [
0 4 1 0
−1 0 0 1

]
= [9/4, 0, −3/4, −1/4],

and hence (xN)3 = s1 enters the basis. B−1N3 = 1/4[2, −1]T . The only positive
element is the first one, and thus the minimum ratio test gives that (xB)1 = x2
leaves the basis

Iteration 2:
With xB = [x3, s1]

T and xN = [x1, x2, x4, s2]
T ,

B =

[
−2 1
2 0

]
, N =

[
0 1 4 0
−1 1 0 1

]
, cTB =

[
−1 0

]
, cTN =

[
2 1 3 0

]
.

xB = B−1b = [1/2, 2]T . The reduced costs are

c̃TN =
[
2 1 3 0

]
−

[
−1 0

] −1

2

[
0 −1
−2 −2

] [
0 1 4 0
−1 1 0 1

]
= [3/2, 3/2, 3, 1/2].

Since the reduced costs are larger than or equal to zero, this BFS is optimal.
Thus x∗ = [x∗1, x

∗
2, x

∗
3, x

∗
4]

T = [0, 0, 1/2, 0]T .

b) Since the reduced costs are strictly positive, the solution is unique.(1p)
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Question 3

(global convergence of exterior penalty method)

a) ψ must be continuous, and ψ(s) = 0 if and only if s = 0; see Section 13.1.1 in(1p)
the book.

b) See Theorem 13.3 in the book.(2p)

Question 4

(True or False)

a) False. This is verified by f([3, 1]T ) = 3− e1 > 0.(1p)

b) True. g1(x) ≤ 0 only for x = 0. Moreover, g2(0) < 0, so S = {0} which is a(1p)
convex set.

c) True. If x◦ is an inner point to the constraints in (P), then it is also an inner(1p)
point to the constraints in (P’), and thus Slater’s constraint qualifier holds also
for (P’). Since the problem is convex, this means that KKT is necessary and
sufficient for global optimality. Moreover, since µk = 0, it is easily verified that
since x∗ is a KKT point for (P), it is also a KKT point for (P’).
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Question 5

(Lagrangian duality and global optimality conditions)

a) Let X := {x ∈ R2 | x1 ≥ 1, 0 ≤ x2 ≤ 10}. The dual function q(µ) =(2p)
infx∈X L (x, µ) is given by

q(µ) =
min x31 + µx21 + (1− µ)x2

subject to x ∈ X
=

{
1 + µ if 0 ≤ µ ≤ 1,

11− 9µ if µ ≥ 1,

where the minimizers of the Lagrangian are attained in x = [1, 0]T for 0 ≤ µ < 1,
in points x = [1, a]T for a ∈ [0, 10] for µ = 1, and in x = [1, 10]T for µ ≥ 1.

b) Let X := {x ∈ R2 | x1 ≥ 1, 0 ≤ x2 ≤ 10} and g(x) = x21 − x2. A point(1p)
(x∗, µ∗) ∈ R2 × R is said to satisfy the global optimality conditions if

x∗ ∈ argmin
X

L(x, µ∗),

x∗ ∈ X and g(x∗) ≤ 0,

µ∗ ≥ 0,

µ∗g(x∗) = 0.

We were told to consider the point x̂ = [1, 1]T and µ̂ = 1. From a), we know that
argminX L(x, 1) = {x = [1, a]T | a ∈ [0, 10]} and thus x̂ ∈ argminX L(x, µ̂).
Moreover, x̂ ∈ X and g(x̂) = 12 − 1 = 0 ≤ 0. Next, µ̂ = 1 ≥ 0. Finally,
µ̂g(x̂) = 1 · 0 = 0. This shows that x̂ = [1, 1]T and µ̂ = 1 satisfy the global
optimality conditions.

Question 6(3p)

(Feasible directions and constraint qualifiers)

We first note that g1(x̃) = g2(x̃) = 0, and hence both constraints are active. We have
the following definitions for three of the cones

RS(x̃) :={p ∈ R2 \ {0} | ∃ ᾱ > 0 such that x+ αp ∈ S ∀α ∈ [0, ᾱ]},
G̊(x̃) :={p ∈ R2 | ∇g1(x̃)Tp < 0, g2(x̃)

Tp < 0},
G(x̃) :={p ∈ R2 | ∇g1(x̃)Tp ≤ 0, g2(x̃)

Tp ≤ 0}.

Moreover, we know that the following inclusions always hold:

cl(RS(x̃)) ⊆ TS(x̃) ⊆ G(x̃).

To compute the different cones, we compute the gradients of the constraints:

∇g1(x̃) =
[
0
1

]
, ∇g2(x̃) =

[
0
−1

]
.
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To compute RS(x̃), let p = [p1, p2]
T . For any p1 ̸= 0 and any p2 > 0, we have that

g1(x̃+ αp) = −α2p21 + αp2 > 0

for all α < p21/p2, and where we have that p21/p2 > 0. This means that such directions
are not in the cone of feasible directions. Similarly, for p1 = 0 and any p2 > 0

g1(x̃+ αp) = αp2 > 0

for all α > 0. Therefore, such directions are not in the cone of feasible directions. And
analogous reasoning can be done for p2 < 0 and g2, which means that no directions
with p2 ̸= 0 can be in RS(x̃). However, for p2 = 0

g1(x̃+ αp) = g2(x̃+ αp) = −α2p21 < 0

for all α > 0. We therefore conclude that RS(x̃) = {p ∈ R2 \ {0} | p2 = 0}, or
equivalently that RS(x̃) = {p ∈ R2 | p2 = 0, p1 ̸= 0}. This also means that cl(RS(x̃)) =
{p ∈ R2 | p2 = 0}.

To compute G(x̃), we note that it consists of all p = [p1, p2]
T such that

0 ≥ ∇g1(x̃)Tp =
[
0 1

]T [
p1
p2

]
= p2

and

0 ≥ ∇g2(x̃)Tp =
[
0 −1

]T [
p1
p2

]
= −p2.

Therefore, G(x̃) = {p ∈ R2 | p2 = 0}.

To compute the tangent cone, we note that cl(RS(x̃)) = G(x̃) = {p ∈ R2 | p2 = 0},
and therefore by the inclusions stated above we must have that cl(RS(x̃)) = TS(x̃) =
G(x̃) = {p ∈ R2 | p2 = 0}. This shows that Abadie’s constraint qualifier holds in x̃.

Finally, to compute G̊(x̃) we note that it consists of all p = [p1, p2]
T such that

0 > ∇g1(x̃)Tp
[
0 1

]T [
p1
p2

]
= p2

and

0 > ∇g2(x̃)Tp
[
0 −1

]T [
p1
p2

]
= −p2.

But both these inequalities cannot hold at the same time and thus G̊(x̃) = ∅.
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Question 7

(Choice of algorithm)

a) Exterior penalty method and Simplex method.(1p)

Note: Newton’s method cannot be used for several reasons: the problem is not
unconstrained, and the Hessian of the cost function is the zero-matrix, that is, it
is not invertible.

b) Interior penalty method.(1p)

Note 1: The Simplex method cannot be used since the problem is not (necessarily)
linear. The steepest descent method cannot be used since the problem is not
unconstrained.

Note 2: Without the assumption on that there is a point x̃ such that Ax̃ < b,
which in the question was expressed as that Slater’s constraint qualifier holds,
then the interior penalty method might not be possible to use either.

c) None of the algorithms can be used.(1p)

Note: The reason is the same for all of the methods, namely that under the
conditions given it is not sure that q(µ) is differentiable everywhere. (See the
solution to Question 5a) on this exam for an example of a q(µ) that is not
differentiable everywhere.)


