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Question 1

(Linear programming)

a) Consider the linear programming problem(2p)

minimize x1 + 2x2 − x3 + 3x4

subject to x1 − 2x3 + 4x4 ≤ 1

x1 − x2 + 2x3 ≤ 1

x1, x2, x3, x4 ≥ 0.

Solve the problem using the Simplex method. Start with x1 and x3 as basic
variables.

Hint: You may find the following identity useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

b) If you find that an optimal solution exists, then use your calculations to de-(1p)
cide whether it is unique or not. If the problem is unbounded, then use your
calculations to specify a ray of unboundedness of the objective value.

Question 2(3p)

(Unconstrained optimization)

Let f : R3 → R be given by f(x) = − 1
12
(x1 + 1)3 + x22 − x2x3 + x23. In the point x̄ =

[1, 1, 1]T , compute the search direction obtained by the following three unconstrained
optimization methods:

a) The steepest descent method,

b) Newton’s method,

c) Newton’s method with the Levenberg-Marquardt modification. Use a modifi-
cation parameter γ ≥ 0 which is the smallest integer such that the conditions
needed are fulfilled.

Which of the above search directions are descent directions?
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Question 3

(Weak duality)

Given a primal problem
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

where X ⊆ Rn is some base set, we can define a Lagrangian dual function q(µ) by
making a Lagrangian relaxation of the inequality constraints. We can also define a
(Lagrangian) dual optimization problem. The weak duality theorem states a relation
between the primal and the dual objective function, and a relation between the opti-
mal values f ∗ (of the primal optimization problem) and q∗ (of the dual optimization
problem).

a) Define the Lagrangian, the dual function, and the dual optimization problem.(1p)
Then give the formal statement of the weak duality theorem.

b) Prove the weak duality theorem. Do so using basic results from the course. If(2p)
you rely on other results when performing your proof of the theorem, then those
results must be stated explicitly; they may however be utilized without proof.

Question 4(3p)

(Nonlinear optimization)

For z ∈ R, define (z)+ := max{0, z}, that is (z)+ = 0 if z < 0 and (z)+ = z if z ≥ 0.
Consider the optimization problem

minimize
x∈Rn

1
2
∥x− y∥2,

subject to
∑n

i=1 xi = 1,

xi ≥ 0, i = 1, . . . , n,

where y ∈ Rn is some given vector and ∥ · ∥ denotes the standard Euclidean norm of
a vector. Use results and methods from the course to show that the globally optimal
solution to this problem is given by the vector x∗ with components x∗i = (yi − λ)+ for
λ such that

n∑
i=1

(yi − λ)+ = 1.
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Question 5

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short (but complete) motivation.

a) Let f : Rn → R be convex and consider the problem(1p) {
minimize f(x)

subject to x ∈ Rn.

Claim: A globally optimal point x∗ always exists for this type of problem.

b) Let f : R3 → R, and let gi : R3 → R for i = 1, 2, 3, 4, and consider the problem(1p) {
minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2, 3, 4.

Claim: There exist convex functions f and gi, for i = 1, 2, 3, 4, such that the
following is a globally optimal solution to the problem that satisfies the global
optimality conditions

x∗ =

05
2

 , µ∗ =


0
1
0
2

 , f(x∗) = 0,


g1(x

∗)
g2(x

∗)
g3(x

∗)
g4(x

∗)

 =


−7
0
0
−3

 .
c) Let f : Rn → R be given by f(x) = xTQx+ cTx, where Q ∈ Rn×n is a symmetric(1p)

matrix and c ∈ Rn.

Claim: f is a convex function if Q has full rank.
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Question 6

(the Karush-Kuhn-Tucker conditions)

Consider the problem 
minimize f(x),

subject to gi(x) ≤ 0, i = 1, 2, 3, 4

x ∈ R2,

where

f(x) = −3
√
3

8π
x21 − 1

6
x22,

g1(x) = −1− cos(x1) + x2,

g2(x) = −x2 + 1,

g3(x) = x1 − π,

g4(x) = −x1 − π.

a) State the Karush-Kuhn-Tucker (KKT) conditions for the problem.(1p)

b) Find all KKT points, i.e., all feasible points x for which there is a solution to the(1p)
KKT-system. Solutions based on graphical considerations are allowed, but they
need to be supplemented with exact mathematical expressions and calculations
motivating the conclusions.

Hint 1: Consider the point x = [π/3, 3/2]T .

Hint 2: The following table of values for sine and cosine might be helpful

θ = − π

2
− π

3
− π

4
− π

6
0

π

6

π

4

π

3

π

2

cos(θ) = 0
1

2

√
2

2

√
3

2
1

√
3

2

√
2

2

1

2
0

sin(θ) = −1 −
√
3

2
−

√
2

2
− 1

2
0

1

2

√
2

2

√
3

2
1

Hint 3: There is no feasible point such that g3(x) = 0, or such that g4(x) = 0.

c) Which of the KKT points has the smallest objective function value? Is this KKT(1p)
point globally optimal?
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Question 7

(Exterior penalty method)

Consider the problem 
minimize f(x),

subject to h(x) = 0,

x ∈ R2.

where

f(x) = −x21 + x42,

h(x) = x1 + x2.

We will consider the exterior penalty method with penalty function ψ(s) = s2.

a) State the penalty transformed problem that needs to be solved in each iteration(0.5p)
of the exterior penalty method.

b) Solve the penalty transformed problem. That is, compute an optimal solution(1.5p)
x∗(ν) as a function of ν. There are multiple solutions, and one such solution
is x∗(ν) = [0, 0]T . You have to compute at least one solution which is not
x∗(ν) = [0, 0]T . Moreover, compute the solution under the assumption that the
penalty parameter ν ≥ 2.

c) Finally, compute limν→∞ x∗(ν) for one of the solutions which is not x∗(ν) =(1p)
[0, 0]T . State what you know about this limit.

Hint: For each ν ≥ 2, there are three optimal solutions to the penalty transformed
problem. One of them is x∗(ν) = [0, 0]T . Do not consider this point. Moreover,
the two other points attain the same objective function value in the penalty
transformed problem. It is enough to consider one of the two solutions.
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Question 1

(Linear programming)

a) Transforming the problem to standard form gives(2p)

minimize x1 + 2x2 − x3 + 3x4

subject to x1 − 2x3 + 4x4 + s1 = 1

x1 − x2 + 2x3 + s2 = 1

x1, x2, x3, x4, s1, s2 ≥ 0.

As stated in the problem, we start with x1 and x3 as basic variables.

Iteration 1:
With xB = [x1, x3]

T and xN = [x2, x4, s1, s2]
T ,

B =

[
1 −2
1 2

]
, N =

[
0 4 1 0
−1 0 0 1

]
, cTB =

[
1 −1

]
, cTN =

[
2 3 0 0

]
.

xB = B−1b = [1, 0]T , and this is thus a BFS (as expected). The reduced costs
are

c̃TN =
[
2 3 0 0

]
−
[
1 −1

] 1
4

[
2 2
−1 1

] [
0 4 1 0
−1 0 0 1

]
= [9/4, 0, −3/4, −1/4],

and hence (xN)3 = s1 enters the basis. B−1N3 = 1/4[2, −1]T . The only positive
element is the first one, and thus the minimum ratio test gives that (xB)1 = x1
leaves the basis

Iteration 2:
With xB = [x3, s1]

T and xN = [x1, x2, x4, s2]
T ,

B =

[
−2 1
2 0

]
, N =

[
1 0 4 0
1 −1 0 1

]
, cTB =

[
−1 0

]
, cTN =

[
1 2 3 0

]
.

xB = B−1b = [1/2, 2]T . The reduced costs are

c̃TN =
[
1 2 3 0

]
−
[
−1 0

] −1

2

[
0 −1
−2 −2

] [
1 0 4 0
1 −1 0 1

]
= [3/2, 3/2, 3, 1/2].

Since the reudced costs are larger than or equal o zero, this BFS is optimal. Thus
x∗ = [x∗1, x

∗
2, x

∗
3, x

∗
4]

T = [0, 0, 1/2, 0]T .

b) Since the reduced costs are strictly positive, the solution is unique.(1p)
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Question 2(3p)

(Unconstrained optimization)

We have that

∇f(x) =

−1
4
(x1 + 1)2

2x2 − x3
2x3 − x2

 , ∇2f(x) =

−1
2
(x1 + 1) 0 0
0 2 −1
0 −1 2


and therefore

∇f(x̄) =

−1
1
1

 , ∇2f(x̄) =

−1 0 0
0 2 −1
0 −1 2

 .
We therefore get that:

a) pSD =

 1
−1
−1

.
b)

−1 0 0
0 2 −1
0 −1 2

 pNewton =

 1
−1
−1

, which gives pNewton =

−1
−1
−1

.
c) We need to find the smallest integer γ ≥ 0 such that ∇2f(x̄)+γI is positive defi-

nite. By the structure of f(x̄), the eigenvalues are given by−1 and the eigenvalues

of

[
2 −1
−1 2

]
. The latter is positive definite (why?), which means that γ = 2.

Therefore, the search direction is given by

−1 0 0
0 2 −1
0 −1 2

+

2 0 0
0 2 0
0 0 2

 pLM = 1
−1
−1

, which gives pLM =

 1
−1

3

−1
3

.
For all three search directions, it can be verified that ∇f(x̄)Tp < 0 (the inner products
are −3, −1 and −5/3, respectively), which means that they are all descent directions.

(Since ∇2f(x̄) is not positive definite, Newton’s method is not recommended to use. In fact, it computes a direction in

x1 which is ascent. But the search direction computed in the point still turns out to be a descent direction.)
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Question 3

(Weak duality)

See pages 158–161 in the course book; in particular Theorem 6.5.

Question 4(3p)

(Nonlinear optimization)

The optimization problem
minimize

x∈Rn

1
2
∥x− y∥2,

subject to
∑n

i=1 xi = 1,

xi ≥ 0, i = 1, . . . , n,

is convex (why?). To solve the problem, we try to use the global optimality conditions.
To this end, we consider the Lagrangian

L(x, λ) = 1
2
∥x− y∥2 + λ

(
n∑

i=1

xi − 1

)
=

n∑
i=1

(
1
2
(xi − yi)

2 + λxi
)
− λ,

in which case the global optimality conditions are

x∗ ∈ argmin
x≥0

L(x, λ∗)

x∗ ≥ 0,
n∑

i=1

x∗i = 1.

(Why are these the optimality conditions? We have only relaxed an equality constraint
and not relaxed any inequality constraints.) The problem minx≥0 L(x, λ) decouples
coordinate-wise, and for i = 1, . . . , n, we are thus interested in solving

min
xi≥0

1
2
(xi − yi)

2 + λxi.

Since this is a convex problem, the optimal solution is either where the derivative is
equal to 0 or at xi = 0. Equating the derivative to 0 gives

0 = xi − yi + λ =⇒ xi = yi − λ.

This means that x∗i = yi − λ if yi − λ ≥ 0 and x∗i = 0 if yi − λ < 0, or in other words
that x∗i = (yi − λ)+. This point fulfills the global optimality conditions if and only if∑n

i=1 x
∗
i =

∑n
i=1(yi − λ)+ = 1.
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Alternative solution

We can also look for a KKT point. Since the problem is convex, finding a KKT point
implies that the point is globally optimal. The KKT system is given by

∇f(x) +
n∑

i=1

µi∇gi(x) + λ∇h(x) =

x1 − y1
...

xn − yn

+
n∑

i=1

µi(−ei) + λ

1...
1

 =

0...
0

 ,
µi ≥ 0, i = 1, . . . , n

µixi = 0, i = 1, . . . , n,

and since we also want feasbile points we need that xi ≥ 0, i = 1, . . . , n and that∑n
i=1 xi = 1.

Now, note that for x∗i = (yi − λ)+, it holds that λ ≥ yi − x∗i (since x
∗
i = 0 if λ ≥ yi and

otherwise λ = yi − x∗i ). Moreover, if x∗i = 0 then we can select µi = λ− yi ≥ 0 where
the inequality follows by the previous inequality. Therefore, if x∗i = 0 then µi = λ− yi
satisfies the ith row of the KKT system, and if x∗i > 0 then x∗i = yi − λ and µi = 0
satisfies the ith row KKT system. Finally, x∗i = (yi − λ)+ ≥ 0 so for it to be feasible
it must fulfill

∑n
i=1(yi − λ)+ = 1.

Another alternative solution (by one of the students on the exam)

For any λ ∈ R, consider the relaxed problem{
minimize

x∈Rn

1
2
∥x− y∥2 + λ (

∑n
i=1 xi − 1) ,

subject to xi ≥ 0, i = 1, . . . , n,

which is a convex optimization problem (why?). Calling this cost function Fλ(x), a
point x(λ) is optimal to the relaxed problem if and only if ∇Fλ(x

(λ))T (x− x(λ)) ≥ 0 for
all x ≥ 0, that is, for all feasible x (Theorem 4.23). We have that

∇Fλ(x) =

x1 − y1 + λ
...

xn − yn + λ

 .
We investigate the proposed point x

(λ)
i := (yi − λ)+. This gives

Fλ(x
(λ))T (x− x(λ)) =

n∑
i=1

((
(yi − λ)+ − yi + λ

)(
xi − (yi − λ)+

))
If yi − λ ≥ 0, then (yi − λ)+ = yi − λ and therefore the first term in the summation is
zero. If yi − λ < 0, then (yi − λ)+ = 0 and then

(
(yi − λ)+ − yi + λ

)(
xi − (yi − λ)+

)
=

−(yi−λ)xi ≥ 0 for all xi ≥ 0. Therefore, Fλ(x
(λ))T (x−x(λ)) ≥ 0 for all x ≥ 0 and thus

x
(λ)
i = (yi − λ)+ is the globally optimal solution to the relaxed problem. For λ such

that 1 =
∑n

i=1 x
(λ)
i =

∑n
i=1(yi − λ)+, the point is also feasible to the original problem

and Fλ(x
(λ)) = 1

2
∥x(λ)−y∥2. By the Relaxation Theorem (Theorem 6.1), it is therefore

also optimal to the original problem.
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Question 5

(True or False)

a) False. ex is a counterexample. x is another.(1p)

b) False. Complementarity does not hold.(1p)

c) False. A counterexample is f(x) = −x2, where Q = [−1] is full rank but f is not(1p)
convex. (Q must be positive semidefinite for f to be convex.)

Question 6

(the Karush-Kuhn-Tucker conditions)

a) For feasible points x, i.e., x such that gi(x) ≤ 0, i = 1, 2, 3, 4, the KKT conditions(1p)
are

∇f(x) +
4∑

i=1

µi∇gi(x) =

[
−3

√
3

4π
x1

−1
3
x2

]
+ µ1

[
sin(x1)

1

]
+ µ2

[
0

−1

]
+ µ3

[
1

0

]
+ µ4

[
−1

0

]
=

[
0

0

]
,

µ1, µ2, µ3, µ4 ≥ 0,

µ1(−1− cos(x1) + x2) = 0, µ2(−x2 + 1) = 0, µ3(x1 − π) = 0, µ4(−x1 − π) = 0.

b) Drawing the problem, and using hint 1 to consider [π/3, 3/2]T , hint 2 to see the(1p)
symmetry of the problem, and hint 3 to not consider x1 = ±π, we considering
the points [0, 2]T , [±π/3, 3/2]T , and [±π/2, 1]T .

• For [0, 2]T , only constrain 1 is active and we find µ1 = 2/3.

• For [±π/3, 3/2]T , only constrain 1 is active and we find µ1 = 1/2.

• For [±π/2, 1]T , constraints 1 and 2 are active and we find µ1 = 3
√
3/8 and

µ2 = 3
√
3/8− 1/3 = (9

√
3− 8)/24.

c) The smallest value among the KKT points is obtained at the points x̂ = [±π/2, 1]T .(1p)
Since the feasible region is closed and bounded, and since f is continuous, by
Weierstrass’ theorem there exists a globally optimal solution. Since the linear
independence CQ holds in all points of the feasible region (verify!) the globally
optimal solutions must be KKT points (why?). This means that x̂ = [±π/2, 1]T
are globally optimal solutions.
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Question 7

(Exterior penalty method)

Consider the problem 
minimize f(x),

subject to h(x) = 0,

x ∈ R2.

where

f(x) = −x21 + x42,

h(x) = x1 + x2.

We will consider the exterior penalty method with penalty function ψ(s) = s2.

a) The penalty transformed problem that needs to be solved in each iteration of the(0.5p)
exterior penalty method is

min
x∈R2

f(x) + νψ(h(x)) = −x21 + x42 + ν(x1 + x2)
2.

b) Let Fν(x) := −x21 + x42 + ν(x1 + x2)
2 denote the cost function of the penalty(1.5p)

transformed problem. An optimal solution to the penalty transformed problem
must be obtained where ∇Fν(x) = 0 since the problem is unconstrained. This
gives the equations [

0
0

]
=

[
−2x1 + 2ν(x1 + x2)
4x32 + 2ν(x1 + x2)

]
.

From these equations, we get that −2x1 = 4x32, or equivalently that x1 = −2x32.
Plugging this into the second equation above gives

0 = 4x32 + 2ν(−2x32 + x2) = 4(1− ν)x2

(
x22 −

ν

2(ν − 1)

)
,

where we note that ν
2(ν−1)

> 0 for all ν ≥ 2 (actually for all ν > 1, but you were

asked to take ν ≥ 2). The nonzero solutions are given by

x∗2(ν) = ±
√

ν

2(ν − 1)
=⇒ x∗1(ν) = ∓2

(
ν

2(ν − 1)

) 3
2

.

c) Plugging the above two points into Fν we see that they take the same value. For(1p)
the first of these points, we have that

lim
ν→∞

−2
(

ν
2(ν−1)

) 3
2√

ν
2(ν−1)

 =

−2
(
1
2

) 3
2√

1
2

 =

[
− 1√

2
1√
2

]
=: x̂.

Since all functions are C1, since ψ′(s) = 2s ≥ 0 for all s ≥ 0, since x̂ is feasible,
and since the LICQ holds in x̂, we know that x̂ is a KKT point to the original
problem (see Theorem 13.4 in course book).


