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Question 1

(Linear programming)

a) Consider the linear programming problem(2p)

minimize 7x1 − 8x2 + 9x3

subject to x1 − 2x2 + 3x3 ≤ 1

4x1 − 5x2 + 6x3 ≤ 1

x1, x2, x3 ≥ 0.

Solve the problem using the Simplex method.

Hint: You may find the following identity useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

b) If you find that an optimal solution exists, then use your calculations to de-(1p)
cide whether it is unique or not. If the problem is unbounded, then use your
calculations to specify a ray of unboundedness of the objective value.

Question 2

(LP duality)

Consider the linear programming problem

minimize − 4x1 − 2x2 − 6x3

subject to 2x1 − x2 + 4x3 ≤ 20

x1 + 2x2 + 4x3 = 60

x1, x3 ≥ 0.

a) State the dual problem.(2p)

b) An optimal solution to the primal problem is(1p)

x∗ =

2020
0

 .

Give an optimal solution to the dual problem.
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Question 3

(Modelling)

a) Consider the box shown in the figure below. It is drawn as a cube, but in this(2p)
exercise we are interested in general rectangular cuboids, that is, cuboids in which
all angles are right angles, and opposite faces are equal.

Formulate an optimization problem for finding the height, width, and depth of
the box so that it has total volume 1, but with as short space diagonal as possible.
The space diagonal is the dotted arrow in the figure.

b) If the optimization problem constructed in part a) is not a convex optimization(1p)
problem, reformulate it as a convex optimization problem. Carefully motivate
why the problem formulated here is convex (or why the problem you formulated
in part a) is convex, if that is the case).

Hint 1: Consider the problem obtained by squaring the objective function from
the problem formulated in part a). Does this new problem have the same optimal
solution?

Hint 2: Consider a logarithmic transformation of the variables in the formulation
in part a).
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Question 4

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short (but complete) motivation.

a) Let g1 : R3 → R and g2 : R3 → R be defined by(1p)

g1(x) = x2
1 + x2

2 + x2
3 − 1,

g2(x) = −(x1 − 3)2 − (x2 − 3)2 − (x3 − 3)2 + 1,

respectively, and let S = {x ∈ R3 | gi(x) ≤ 0 for i = 1, 2}.
Claim: The set S is convex.

b) Let f : R2 → R, g1 : R2 → R, and g2 : R2 → R be given by(1p)

f(x) = 9x2
1 + x1x2 + 4x2

2 − x1 + 3,

g1(x) = −(x1 − 2)2 − (x2 − 2)2 + 9,

g2(x) = x2
1 + x2

2 − 4,

respectively, and consider the problem{
minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2.

Claim: Newton’s method, as taught in the course, can be used to solve this
optimization problem.

c) Consider the problem(1p)

(P)

{
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

where f : Rn → R and gi : Rn → R for i = 1, . . . ,m. Assume that the point x∗

is a globally optimal solution to (P).

Claim: If the following conditions hold:

i) Abadie’s constraint qualifier holds in x∗, and x∗ is a KKT point,

ii) for constraint k, gk(x
∗) = 0 (that is, it is active), but the corresponding

multiplier in the KKT system is equal to zero (that is, µk = 0),

then x∗ is also globally optimal to the problem

(P’)

{
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , k − 1, k + 1, . . . ,m.
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Question 5(3p)

(Characterization of convexity for continuously differentiable functions)

Convex functions are an important class of functions. The following theorem is a
characterization of continuously differentiable convex functions.

THEOREM: Let f ∈ C1 on an open convex set S ⊂ Rn. f is convex on S if and only
if f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ S.

Prove the above theorem. Do so using basic results from the course. If you rely on
other results when performing your proof of the theorem, then those results must be
stated explicitly; they may however be utilized without proof.

Question 6(3p)

(Nonlinear optimization)

Consider the optimization problem{
minimize

x∈R3
f(x),

subject to h(x) = 0,

where

f(x) = x4
1 + x2

2 + x4
3,

h(x) = x1 + x2 + x3 − 1.

Use results and methods from the course to find the globally optimal solution to the
problem. It is ok to present the solution (and the “certificate” for global optimality)
in terms of rounded numbers with 3 significant digits.

Hint 1: Do NOT try to use an iterative numerical method from the course to solve the
problem. The problem can be solved analytically.

Hint 2: A so called depressed cubic equation is an equation of the form t3+pt+ q = 0,
where p and q are real numbers. If ∆ := q2/2 + p3/27 is greater than 0, than a real
solution to the depressed cubic equation is given by

t = 3
√
u1 + 3

√
u2,

where u1 = −q/2 +
√
∆ and u2 = −q/2−

√
∆.
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Question 7

(Interior penalty methods)

Consider the problem

(P)


minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.

Let R+ := {s ∈ R | s ≥ 0}, let R− := {s ∈ R | s ≤ 0}, and let

S := {x ∈ Rn | gi(x) ≤ 0, for i = 1, . . . ,m}.

Also consider the transformed problem

(Pν)

{
minimize f(x) + νχ̂S(x),

subject to x ∈ Rn,

where

χ̂S(x) :=

{∑m
i=1 ϕ(gi(x)) if gi(x) < 0 for i = 1, . . . ,m,

∞ otherwise.

a) For certain functions ϕ : R− → R+, which have some specific properties, we(1p)
call (Pν) an interior penalty transformation of (P). Such functions ϕ are called
interior penalty functions. Which of the functions

ϕ1(s) = s2, ϕ2(s) = log(−s), ϕ3(s) = |s|, ϕ4(s) = − 1

s− 1
, ϕ5(s) =

1

s2

are interior penalty functions? Here, log denotes the natural logarithm, that is,
log(ex) = x.

b) A valid interior penalty function is given by ϕ(s) = −1/s. As a specific instance(2p)
of a problem of the form (P), let n = 2, m = 1, and let

f(x) = x2
1 + x2

2,

g(x) = 2x1 − x2 + 30.

Denote by x(ν) an optimal solution to the penalty transformed problem (Pν)
with penalty parameter ν. Verify that the following can be the output of an
interior penalty method using this penalty function, where each step is assumed
to be solved to a reasonable numerical precision.
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k νk x(νk)

0 1000

[
−15.240

7.6201

]

1 100

[
−13.105

6.5525

]

2 10

[
−12.360

6.1799

]
...
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Question 1(3p)

(Linear programming)

a) Transforming the problem to standard form gives(2p)

minimize 7x1 − 8x2 + 9x3

subject to x1 − 2x2 + 3x3 + s1 = 1

4x1 − 5x2 + 6x3 + s2 = 1

x1, x2, x3, s1, s2 ≥ 0.

From this, we see that we can start simplex (phase-II) with s1 and s2 as basic
variables.

Iteration 1:
With xB = [s1, s2]

T and xN = [x1, x2, x3]
T ,

B =

[
1 0
0 1

]
, N =

[
1 −2 3
4 −5 6

]
, cTB =

[
0 0

]
, cTN =

[
7 −8 9

]
.

xB = B−1b = [1, 1]T . The reduced costs are c̃TN = cTN−cTBB
−1N = [7, −8, 9], and

hence (xN)2 = x2 enters the basis. B−1N2 = [−2, −5]T , and hence the problem
is unbounded from below.

b) A ray of unboundedness for the objective function is given by(1p)

x+ µp =

[
xB

xN

]
+ µ

[
pB
pN

]
=

[
xB

xN

]
+ µ

[
−B−1N2

e2

]
=


0
0
0
1
1

+ µ


0
1
0
2
5


for µ ≥ 0.
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Question 2(3p)

(LP duality)

a)(2p)

maximize 20y1 + 60y2

subject to 2y1 + y2 ≤ −4

− y1 + 2y2 = −2

4y1 + 4y2 ≤ −6

y1 ≤ 0

y2 ∈ R

b) Since the optimal x1 is nonzero, by complementary slackness of optimal solutions(1p)
to LPs, the optimal solution to the dual problem must be tight on the first
constraint. Since the second constraint in the dual is an equality constraint, the
optimal solution can be found by solving the system of equations[

2 1
−1 2

] [
y∗1
y∗2

]
=

[
−4
−2

]
=⇒

[
y∗1
y∗2

]
=

[
−6

5

−8
5

]
.

It is easily verified that this point is also feasible for the third constraint, and that
it attains the objective function value −120, which is the same as the optimal
value of the primal problem.
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Question 3

(Modelling)

a) Let the height, width, and depth of the box be denoted by x1, x2 and x3, respec-(2p)
tively. The volumne of the box is given by x1x2x3 and the length of the space
diagonal is given by

√
x2
1 + x2

2 + x2
3. The optimization problem is therefore

min
x1, x2, x3

√
x2
1 + x2

2 + x2
3

subject to x1x2x3 = 1 (volume of box is 1)

xi > 0, i = 1, 2, 3. (lengths are positive)

b) Let f(x) be the objective function above, and note that f(x) ≥ 0 for all feasible(1p)
points. If x∗ is a globally optimal solution to the above problem, by definition
f(x∗) ≤ f(x) for all feasible x. But this means that f(x∗)2 ≤ f(x)2 for all feasible
x, and hence we can equivalently consider the problem

min
x1, x2, x3

x2
1 + x2

2 + x2
3

subject to x1x2x3 = 1 (volume of box is 1)

xi > 0, i = 1, 2, 3. (lengths are positive)

Next, let yi = log(xi), for i = 1, 2, 3, where log denotes the natural logarithm.
Then x2

i = e2yi , for i = 1, 2, 3, and we can rewrite the volume constraint by noting
that

y1 + y2 + y3 = log(x1) + log(x2) + log(x3) = log(x1x2x3) = log(1) = 0.

Since log is bijective on {z ∈ R | z > 0}, this gives the equivalent problem

min
y1, y2, y3

e2y1 + e2y2 + e2y3

subject to y1 + y2 + y3 = 0,

which is convex (motivate!).
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Question 4

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short but complete motivation.

a) True. For all x such that g1(x) ≤ 0, we have that |x1| ≤ 1, |x2| ≤ 1, and |x3| ≤ 1.(1p)
For all such points, it is easily verified that g2(x) < 0. Hence S = {x ∈ R3 |
g1(x) ≤ 0}, and the latter is a convex set (why?).

(Geometric intuition: S = {x ∈ R3 | g1(x) ≤ 0}∩ {x ∈ R3 | g2(x) ≤ 0}. The first set is all points inside the unit

sphere, and the second set is all points outside of a sphere of radius 1 centered in the point [3, 3, 3]T . All points

in the first set are also in the second set, and thus S = {x ∈ R3 | g1(x) ≤ 0}.)

b) False. Newton’s method, as taught in this course, are used to solve unconstrained(1p)
optimization problems.

c) False. f(x) = x3, g1(x) = −x, g2(x) = x2 − 1, and x∗ = 0 is a counterexam-(1p)
ple. To this end, first note that x∗ = 0 is the unique globally optimal solution
(why?). Furthermore, Abadie’s constraint qualifier holds in x∗ (motivate!). Fi-
nally, ∇f(x∗) = 0 and hence x∗ is a KKT point with µ1 = µ2 = 0 (note that
g2(x

∗) < 0). Nevertheless, removing the constraint g1, the problem to minimize
f(x) subject to g2(x) ≤ 0 has the globally optimal solution x̂ = −1 ̸= x∗.
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Question 5(3p)

(Characterization of convexity for continuously differentiable functions)

See Theorem 3.48 a) in the course book.

Question 6(3p)

(Nonlinear optimization)

The cost function f is convex (verify!) and the constraint h is affine, which means that
the problem is convex. Next, note that Slater CQ holds (no inequality constraints,
and affine equality constraints). Together with convexity this means that a point is
globally optimal if and only if it is a KKT point (Corollary 5.51).

A globally optimal solution (if one exists) is given by a point x such that

∇f(x) + λ∇h(x) =

4x3
1

2x2

4x3
3

+ λ

11
1

 =

00
0

 ,

x1 + x2 + x3 = 1,

for some λ ∈ R. From the first two equations, we have that

4x3
1 = −λ = 2x2 =⇒ x2 = 2x3

1,

and from the first third equation we in a similar manner find that x1 = x3. Using these
two identities in the forth equation gives that

x1 + 2x3
1 + x1 = 1 =⇒ x3

1 + x1 − 1
2
= 0.

This is a depressed cubic equaiton, with p = 1 and q = −1/2. It can now be verified
that ∆ := q2/2 + p3/27 > 0, and using the formulas to compe the real root (using
a calculator) gives x1 ≈ 0.423853799. This means that x2 ≈ 0.15245004 and λ ≈
−0.3045848037. Rounding to 3 significant digits, this means that

x∗ ≈

0.4240.152
0.424


and λ ≈ −0.305

(To formally prove that a globally optimal solution to the problem does exist, before explicitly finding one using the

KKT conditions: Note that f is continuous, that the feasible region is a closed set (why?), and that f is weakly coercive

on the feasible region. To see the last point, note that f is weakly coercive on R3, since for any sequence {xn} such that

∥xn∥ → ∞ we have that f(xn) → ∞, and therefore it is also weakly coercive on the feasible region. By Weierstrass’

theorem, the problem therefore has (at least) one globally optimal solution.)



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 6

Question 7

(Interior penalty methods)

a) It should be continuous, map from R− to R+, and be such that ϕ(sk) → ∞ as(1p)
k → ∞ for any negative sequence {sk} that converges to 0. The only function
with these properties is ϕ5.

b) To show that it is valid output from an interior penalty method, for k = 0, 1, 2,(2p)
we verify that x(νk) fulfills g(x(νk)) < 0, and it is optimal to (Pνk).

The fact that g(x(νk)) < 0 is easily verified.

There are multiple ways to verify that x(νk) is optimal to (Pνk). One such
way: first note that f is convex and that g is affine and hence convex. This
means that (P) is a convex problem. Moreover, ϕ(g(x)) is also convex on the set
{x ∈ R2 | g(x) < 0} (why?). This means that (Pν) is convex (why?). The output
is thus valid if the gradient of the cost function in (Pν) is approximately equal to
zero in these points (why?). To this end, the gradient is

∇f(x) + νϕ′(g(x))∇g(x) =

[
2x1

2x2

]
+ ν

1

(2x1 − x2 + 30)2

[
2
−1

]
Plugging in the values of νk and x(νk) and computing the gradient (on a clacu-
lator) gives [

0.0024
−0.0010

]
,

[
−0.0025
0.0013

]
,

[
−0.023
0.011

]
,

which are all “reasonably close to zero”.


