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Question 1(3p)

(Linear programming)

Consider the linear programming problem

minimize − 4x1 − 2x2 − 6x3

subject to 2x1 − x2 + 4x3 ≤ 30

x1 + 2x2 + 4x3 = 80

x1, x2, x3 ≥ 0.

Solve the problem using the Simplex method (phase-II), starting with x2 and x3 as
basic variables.

Question 2

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short (but complete) motivation.

a) Let f : R2 → R, g1 : R2 → R, and g2 : R2 → R be given by(1p)

f(x) = −x4
1 + x2

1x
2
2 + 0.5x3

2 − x1 + 3,

g1(x) = −(x1 − 2)2 − (x2 − 2)2 + 9,

g2(x) = x2
1 + x2

2 − 4,

respectively, and consider the problem{
minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2.

Claim: The Frank-Wolfe method can be used to solve this optimization problem.

b) Let f : Rn → R. Assume that f is twice continuously differentiable (f ∈ C2(Rn))(1p)
and strictly convex.

Claim: f is bounded from below.

c) Let f : R2 → R be given by(1p)

f(x) = x2
1 + sin(x1)x2 − ex2 .

Claim: The point ([0, 0]T , 1) belongs to the epigraph of f , that is, ([0, 0]T , 1) ∈
epi f ⊂ R2 × R.
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Question 3(3p)

(Farkas’ Lemma)

Farkas’ Lemma is an important result in convex analysis and optimization. It can be
stated as follows.

THEOREM: Let A ∈ Rm×n and b ∈ Rm. Then, exactly one of the systems

Ax = b,

x ≥ 0,

and

ATy ≤ 0,

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma. Do so using basic results from the course. If you rely on other
results when performing your proof of the theorem, then those results must be stated
explicitly; they may however be utilized without proof.
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Question 4

(The Karush-Kuhn-Tucker conditions and Relaxations)

Consider the optimization problem

(1)


minimize

x∈R3
f(x),

subject to g(x) ≤ 0,

h(x) = 0,

where

f(x) = (x1 + 2)2 + (x2 + 2)2 + x2
3,

g(x) = x1 + x2 + x3,

h(x) = x2
1 + x2

2 − 1.

a) State the Karush-Kuhn-Tucker (KKT) conditions for the problem, and verify(1p)
that x∗ = [−1/

√
2, −1/

√
2, 0]T is a KKT point, that is, a feasible point for

which there is a solution to the KKT-system.

b) Let S ⊂ Rn and f̃ : S → R, and let SR ⊂ Rn and f̃R : SR → R. Consider the(0.5p)
two problems

(P)

{
minimize f̃(x),

subject to x ∈ S,

and

(PR)

{
minimize f̃R(x),

subject to x ∈ SR.

Under what conditions do we call (PR) a relaxation of (P)?

c) Use the results in a) and b) to show that x∗ is globally optimal to (1). Motivate(1.5p)
all steps and conclusions carefully.
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Question 5(3p)

(Nonlinear programming)

Let N be a positive integer, and let a(i) > 0 for i = 1, 2, . . . , N be given positive real
numbers. We define the geometric mean value of these positive real numbers as

ā = (a1a2 . . . aN)
1/N = N

√
a1a2 . . . aN ,

where for a > 0, N
√
a = a1/N denotes the Nth root. Show that ā is a local minimizer

of the problem

minimize
1

2

N∑
i=1

(log(x)− log(ai))
2

subject to x > 0,

where log denotes the natural logarithm, i.e., log(ex) = x.

Hint 1 : Recall the derivative of the natural logarithm, namely that for x > 0

d

dx
log(x) =

1

x
.

Hint 2: Recall the logarithm laws:

i) for x, y > 0, log(xy) = log(x) + log(y);

ii) for p > 0 and x > 0, log(xp) = p log(x).

Question 6(3p)

(Newton’s method)

Let f : R3 → R be given by f(x) = 1
2
xTQx where

Q =

1 0 0
0 2 1
0 1 −1

 ,

and consider the problem

minimize f(x)

subject to x ∈ R3.

Starting in the point x(0) = [1, 1, 1]T and using step length α = 1/2, take one step
in Newton’s method with the Levenberg-Marquardt modification. As modification
parameter γ, take the smallest valid integer for the modification.

Hint: You may find the following identity useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.
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Question 7(3p)

(Modelling)

A friend of yours, we can call the person AR, is running a small business. The company
is doing well, and AR would like to expand the business over the coming years. However,
at the same time, AR would like to maximize the total revenue from the business over
the same time horizon. AR has therefore asked for your help to derive a model for how
the company should invest its yearly profit in order to maximize the total accumulated
revenue over the given time period.

More specifically, the planning horizon is a period of T years. At the start of year 1,
the company has assets (for example: buildings, machines, computers, etc.) of a total
value of X SEK. Since AR is interested in maximizing the total accumulated revenue
over the given time period, we model the total accumulated revenue at the beginning
of year 1 to be 0 SEK. Based on historical data, a good model for the total profit that
the company makes in one year is that it is a fraction α, where α is a fixed number in
the interval (0, 1), of that value of the companies assets at the beginning of the year.

AR only wants to take one investment decision per year. Therefore, you are asked to
model it as if the company gets access to the previous years total profit at the start
of the next year. At that time point, the company must choose what to do with the
profit. It can do two things: It can add a fraction of the profit to the total accumulated
revenue, and it can invest the remaining fraction of the profit in the company to grow
the total value of the assets.

Finally, note that investments in the company to increase the assets cannot be taken
out as revenue later on. This means that the total value of the companies assets cannot
decrease over time. Moreover, it also means that the value of the company assets should
not be counted as part of the total revenue over the time period. Nevertheless, since
AR is not only interested in the total revenue, but is also interested in growing the
company, a specific instruction was given to you: in your model, you must make sure
that the company assets has at least doubled in size by the end of the planning period.

Help AR by formulating this as an optimization problem.

Hint: Consider using decision variables that model the state of relevant quantities, as
well as actions taken, at the beginning of each year.
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Question 1(3p)

(Linear programming)

Transforming the problem to standard form gives

minimize − 4x1 − 2x2 − 6x3

subject to 2x1 − x2 + 4x3 + s = 30

x1 + 2x2 + 4x3 = 80

x1, x2, x3, s ≥ 0.

Iteration 1:
With xB = [x2, x3]

T and xN = [x1, s]
T ,

B =

[
−1 4
2 4

]
, N =

[
2 1
1 0

]
, cTB =

[
−2 −6

]
, cTN =

[
−4 0

]
.

xB = B−1b = [50/3, 35/3]T . The reduced costs are c̃TN = cTN−cTBB
−1N = [−13/6, 1/3],

and hence (xN)1 = x1 enters the basis. B−1N1 = [−1/3, 5/12]T , and since only the
second component is positive we have that (xB)2 = x3 leaves the basis.

Iteration 2:
With xB = [x1, x2]

T and xN = [x3, s]
T ,

B =

[
2 −1
1 2

]
, N =

[
4 1
4 0

]
, cTB =

[
−4 −2

]
, cTN =

[
−6 0

]
.

xB = B−1b = [28, 26]T . The reduced costs are c̃TN = cTN − cTBB
−1N = [26/5, 6/5] > 0.

Hence the point x∗ = [28, 26, 0]T is optimal.

Question 2

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short but complete motivation.

a) False. The Frank-Wolfe method can only be applied when the constraint set is a(1p)
polyhedron.

b) False. A counterexample is given by f(x) = ex + x.(1p)

c) True. This is verified by f([0, 0]T ) = 0 + 0− 1 = −1 ≤ 1.(1p)
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Question 3(3p)

(Farkas’ Lemma)

See Theorem 4.35 or 10.10, and the corresponding proof.

Question 4

(the Karush-Kuhn-Tucker conditions and Relaxations)

a) For a feasible point x, i.e., a point such that g(x) ≤ 0 and h(x) = 0, the KKT(1p)
conditions are

∇f(x) + µ∇g(x) + λ∇h(x) = 2

x1 + 2
x2 + 2
x3

+ µ

11
1

+ λ

2x1

2x2

0

 =

00
0


µ ≥ 0

µg(x) = µ(x1 + x2 + x3) = 0.

It is easily verified that for the point x∗ = [−1/
√
2, −1/

√
2, 0]T , we have that

g(x∗) < 0 and h(x∗) = 0, i.e., x∗ is feasible and g is not active. Plugging the
point into the KKT conditions, we find that equations are satisfied for µ∗ = 0
and λ∗ = 2

√
2− 1.

b) The two conditions are S ⊆ SR, and fR(x) ≤ f(x) for x ∈ S.(0.5p)

c) If the constraint h(x) = 0 is changed to h(x) ≤ 0, we get a relaxation of the(1.5p)
original problem (why?). Moreover, the relaxed problem is convex (why?). Fur-
thermore, since multiplier λ∗ for the equality constraint is positive in the point
x∗ = [−1/

√
2, −1/

√
2, 0]T , x∗ remains a KKT point for the relaxed problem

(why?). By sufficiency of KKT points for global optimality for convex problems
(Theorem 5.49), x∗ is globally optimal for the relaxed problem. By the relax-
ation theorem (Theorem 6.1), it is therefore also globally optimal for the original
problem.
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Question 5(3p)

(Nonlinear programming)

The optimization problem is a one-dimensional problem. Denoting the cost function
f(x), for x > 0 the derivative is given by

f ′(x) =
1

2

N∑
i=1

(
2(log(x)− log(ai))

1

x

)
=

N∑
i=1

log(x)− log(ai)

x
=

N log(x)−
∑N

i=1 log(ai)

x
.

Since the feasible region is open, and since f is differentiable on the feasible region, if
a local minimizer x⋆ exists, it must fulfill f ′(x⋆) = 0 (motivate!). This means that a
potential local minimizer must fulfill

N log(x⋆)−
∑N

i=1 log(ai)

x⋆
= 0 ⇐⇒ log(x⋆) =

1

N

N∑
i=1

log(ai).

Using the logarithm laws, this gives

log(x⋆) =
1

N

N∑
i=1

log(ai) =
1

N
log(a1a2 . . . aN) = log

(
(a1a2 . . . aN)

1/N
)
.

Since log is bijective, we have that x⋆ = ā = (a1a2 . . . aN)
1/N > 0.

For x > 0, the second derivative is given by

f ′′(x) = N
1
x
x− log(x)

x2
+

∑N
i=1 log(ai)

x2
=

N −N log(x) +
∑N

i=1 log(ai)

x2
.

A direct caluclation gives that

f ′′(x⋆) =
N

(x⋆)2
> 0,

and hence x⋆ is a local minimum (motivate!).
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Question 6(3p)

(Newton’s method)

We have that ∇f(x) = Qx and ∇2f(x) = Q. The eigenvalues of Q are λ1 = 1 and
λ2,3 = 1/2±

√
13/4. So there is one negative eigenvalue of the Hessian, and it is given

by 1/2−
√

13/4 ≈ −1.3028. That means that γ = 2. The search direction is therefore
given by

p(0) = −(∇2f(x(0)) + γI)−1∇f(x(0)) = −

3 0 0

0 4 1

0 1 1


−1 13

0

 =

−
1
3

−1

1

 .

This means that

x(1) = x(0) + αp(0) =

11
1

+
1

2

−
1
3

−1

1

 =


5
6
1
2
3
2

 .

Question 7(3p)

(Modelling)

For each t = 1, 2, . . . , T + 1, let

xt = total value of assets at the beginning of year t

yt = total revenue accumulated at the beginning of year t.

This means that xT+1 and yT+1 are the total value of assets and total accumulated
revenues, respectively, at the end of the planning horizon. For t = 1, 2, . . . , T , let

γt = fraction of profit from year t invested in assets at the start of year t+ 1

An optimization problem for maximizing total revenue accumulated over the time
period is given by

max
xt, yt, γt

yT+1

subject to xt+1 = xt + γtαxt, ∀t ∈ {1, 2, . . . , T} (accumulated value of assets)

x1 = X, (starting value for assets)

yt+1 = yt + (1− γt)αxt, ∀t ∈ {1, 2, . . . , T} (accumulated revenue)

y1 = 0, (starting value for revenue)

xT+1 ≥ 2X, (assets at least double in size)

0 ≤ γt ≤ 1, ∀t ∈ {1, 2, . . . , T}.


