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Question 1

(LP duality)

Consider the linear programming problem

minimize 13x1 + 14x2 + 15x3 + 16x4

subject to x1 + 2x2 + 3x3 + 4x4 ≤ 1

5x1 + 6x2 + 7x3 + 8x4 ≥ 2

9x1 + 10x2 + 11x3 + 12x4 = 3

x1, x2, x3, x4 ≥ 0.

a) State the dual problem.(2p)

b) An optimal solution to the primal problem is(1p)

x∗ =


0
0
0

0.25

 .

Give an optimal solution to the dual problem.

Question 2

(Separation Theorem)

The separation theorem is an important theorem in convex analysis and optimization.
Somewhat informally, it states that for a closed and convex set C ⊂ Rn which is
nonempty, if we take a point that is not in C, we can find a hyperplane that separates
the space into two halfspaces so that the point is on one side of the hyperplane and C
is on the other side of the hyperplane.

a) Give the formal statement of the separation theorem.(1p)

b) Prove the separation theorem. Do so using basic results from the course. If(2p)
you rely on other results when performing your proof of the theorem, then those
results must be stated explicitly; they may however be utilized without proof.
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Question 3(3p)

(Frank-Wolfe method)

Your not so reliable friend AR wants to solve an optimization problem of the form

minimize f(x)

subject to x1 +
1

2
x2 ≥ 2

x1 −
1

3
x2 ≥

1

3
x1 + x2 ≤ 7

x1 ≥ 0

x2 ≥ 0,

for some continously differentiable function f : R2 → R. To do so, AR has implemented
the problem in a computer and applied an iterative algorithm. The output from the
first few steps of the algorithm is displayed in the table below.

k xk ∇f(xk) pk αk xk+1

0

[
4

3

] [
0

−1

] [
−2

2

]
1

2

[
3

4

]

1

[
3

4

] [
1

0

] [
−2

−2

]
1

2

[
2

3

]

2

[
2

3

] [
1/2

1

] [
0

−3

]
1

2

[
2
3
2

]
...

In this table, xk is the current iterate (point), ∇f(xk) is the gradient in that point,
pk is the search direction used from the current iterate, αk is the step length, and
xk+1 = xk + αkp

k is the next iterate. AR knows that the step length computations
are done correctly using the Armijo step length rule, however AR has forgotten which
algorithm that was used to compute the feasible descent directions. Therefore, AR has
a hard time reproducing the results. Help AR by verifying that the steps displayed in
the table are consistent with (that is, can be the output of) the Frank-Wolfe method.
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Question 4

(True or False)

The below three claims should be assessed. For each claim: Clearly state whether it is
true or false. Provide an answer together with a short but complete motivation.

a) Let f : R2 → R be defined by(1p)

f(x) = −x4
1 + x2

1x
2
2 + 0.5x3

2 − x1 + 3,

and consider the problem

minimize f(x)

subject to x ∈ R2.

Assume that we want to solve this problem using Newton’s method with the
Levenberg-Marquardt modification. The initial point is x0 = [1, 1]T .

Claim: The parameter γ = 10.5 is a valid modification parameter for Newton’s
method with the Levenberg-Marquardt modification in the point x0.

b) Let g1 : R3 → R, g2 : R3 → R, and g3 : R3 → R be defined by(1p)

g1(x) = x2
1 + x2

2 − 4,

g2(x) = x2
2 + x2

3 − 9,

g3(x) = −x3
1 + x2 + x3,

respectively, and let S = {x ∈ R3 | gi(x) ≤ 0 for i = 1, 2, 3}.
Claim: The set S is not convex.

c) Let g1 : R2 → R and g2 : R2 → R be defined by(1p)

g1(x) = (x1 − 1)2 + x2
2 − 1,

g2(x) = (x1 + 1)2 + x2
2 − 1

respectively, and let S = {x ∈ R2 | gi(x) ≤ 0 for i = 1, 2}.
Claim: The vector p̄ = [1, 0]T is an element in the tangent cone in the point
x̄ = [0, 0]T . That is, p̄ ∈ TS(x̄).
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Question 5(3p)

(Unconstrained optimization)

Let N be a positive integer, and let a(i) ∈ Rm for i = 1, 2, . . . , N be given vectors. For
these N vectors of dimension m, we define the mean value as

ā =
1

N

N∑
i=1

a(i).

Show that ā is the unique global minimizer of the problem

minimize
1

2

N∑
i=1

∥x− a(i)∥2

subject to x ∈ Rm.

Question 6

(the Karush-Kuhn-Tucker conditions)

Consider the problem 
minimize f(x),

subject to gi(x) ≤ 0, i = 1, 2

x ∈ R2,

where

f(x) = −x2
1 − (x2 − 2)2,

g1(x) = x2
1 − x2,

g2(x) = −x1 − 1.

a) State the Karush-Kuhn-Tucker (KKT) conditions for the problem.(1p)

b) Find all KKT points, i.e., all feasible points x for which there is a solution to the(1p)
KKT-system. Solutions based on graphical considerations are allowed, but they
need to be supplemented with exact mathematical expressions and calculations
motivating the conclusions.

Hint: Consider the point x = [
√
3/2, 3/2]T .

c) Which of the KKT points has the smallest objective function value? Is this KKT(1p)
point globally optimal?
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Question 7(3p)

(Modelling)

Consider the hexagon shown in the image below. Formulate an optimization problem
for finding the values of x(1), y(1), x(2) and y(2) that maximize the area of the hexagon
in such a way that the diameter of the hexagon is less than or equal to 1. The latter
means that all corner points of the hexagon must be at a distance of at most 1 from
all other corner points.

Hint 1: To keep the ordering of the corner points as in the figure, note that one must
have x(1) ≤ x(2), y(1) ≥ 0, and y(2) ≥ 0.

Hint 2: The area of a trapezoid with sides as in the image below is A = 1
2
(a+ b)h.
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Question 1(3p)

(LP duality)

a)(2p)

maximize y1 + 2y2 + 3y3

subject to y1 + 5y2 + 9y3 ≤ 13

2y1 + 6y2 + 10y3 ≤ 14

3y1 + 7y2 + 11y3 ≤ 15

4y1 + 8y2 + 12y3 ≤ 16

y1 ≤ 0

y2 ≥ 0

y3 ∈ R.

b) The optimal primal objective function value is f ∗ = 4, so the dual objective(1p)
function value is bounded from above by 4 on the dual feasible region. A couple
of feasible points in the dual that achieve this objective function value are y =
[4, 0, 0]T , y = [0, 2, 0]T , and y = [0, 0, 4/3]T , which hence must all be optimal
solutions.

(Alternatively: From the primal optimal solution and complementary in linear
programming, we know that a dual optimal solution must be tight on the forth
constraint, i.e., the inequality must be satisfied with equality. Moreover, we see
that 4y1 + 8y2 + 12y3 ≤ 16 is equivalent with y1 + 2y2 + 3y3 ≤ 4, which means
that the objective function is bounded from above by 4. Therefore, any point in
the dual that satisfies the last inequality with equality and that also satisfies the
other three inequalities will be optimal. One such point is y∗ = [4, 0, 0]T .)

Question 2

(Separation Theorem)

a) See Theorem 4.29 in the book.(1p)

b) See the proof of Theorem 4.29 in the book.(2p)
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Question 3(3p)

(Frank-Wolfe method)

To be the output of the Frank-Wolfe method, the search directions should be of the
form pk = yk − xk where yk is an optimal solution to

minimize ∇f(xk)T z

subject to z1 +
1

2
z2 ≥ 2

z1 −
1

3
z2 ≥

1

3
z1 + z2 ≤ 7

z1 ≥ 0

z2 ≥ 0.

Writing the problem in standard form gives

minimize ∇f(xk)T z

subject to Az = b

z1, z2, s1, s2, s3 ≥ 0,

where

A =

1 1
2

−1 0 0
1 −1

3
0 −1 0

1 1 0 0 1

 , b =

21
3

7

 .

We can now verify that y0 = x0+p0 = [2, 5]T , y1 = x1+p1 = [1, 2]T , and y2 = x2+p2 =
[2, 0]T are indeed optimal solutions to the corresponding problems. The latter can be
done in many different ways, e.g., by investigating which constraints an optimal point
yk is tight on, forming the corresponding BFS, and verifying that the BFS is optimal
by computing the reduced costs. A graphical sketch is given in the picture below.
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Question 4

(True or False)

The below three claims should be assessed. For each claim: clearly state whether it is
true or false. Provide an answer together with a short but complete motivation.

a) False. The Hessian is(1p)

∇2f(x) =

[
−12x2

1 + 2x2
2 4x1x2

4x1x2 3x2 + 2x2
1

]
and thus

∇2f(x0) + γI =

[
−10 4
4 5

]
+ 10.5

[
1 0
0 1

]
=

[
0.5 4
4 15.5

]
.

The eigenvalues of this matrix are λ1 = −0.5 and λ2 = 16.5, which means that it
is not positive definite (there are also other ways to check that it is not positive
definite, e.g., the determinant is negative).

b) True. The two points x1 = [1, 0, 1]T and x2 = [0, 0, 0]T both belong to the(1p)
set (verify the constraints!), but the point x̄ = 1

2
x1 + 1

2
x2 = [1

2
, 0, 1

2
]T does not

(violates constraint g3).

c) False. S = {[0, 0]T}, so TS(x̄) = {[0, 0]T} and thus p̄ ̸∈ TS(x̄). (Other way to see(1p)
it: G(x̄) = {p ∈ R2 | p1 = 0} and TS(x̄) ⊂ G(x̄), but p̄ ̸∈ G(x̄)).
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Question 5(3p)

(Unconstrained optimization)

Denoting the cost function f(x), the gradient is given by

∇f(x) =
N∑
i=1

(x− ai) = Nx−
N∑
i=1

ai.

Moreover, the Hessian is given by

∇2f(x) = NI ≻ 0 for all x ∈ Rm,

where I ∈ Rm×m is the identity matrix. This means that f is a strictly convex function
(motivate! Theorem 3.49). If the unconstrained optimization problem has an optimal
solution, the latter is unique (motivate! Proposition 4.10). Moreover, x⋆ is a globally
optimal solution to the optimization problem if and only if ∇f(x⋆) = 0 (motivate!
Theorem 4.18). Now,

∇f(x⋆) = 0 ⇐⇒ x⋆ =
1

N

N∑
i=1

ai = ā.

Question 6

(the Karush-Kuhn-Tucker conditions)

a) For feasible points x, i.e., x such that gi(x) ≤ 0, i = 1, 2, the KKT conditions are(1p)

∇f(x) +
2∑

i=1

µi∇gi(x) =

[
−2x1

−2(x2 − 2)

]
+ µ1

[
2x1

−1

]
+ µ2

[
−1
0

]
=

[
0
0

]
µ1, µ2 ≥ 0,

µ1(x
2
1 − x2) = 0, µ2(−x1 − 1) = 0

b) Drawing the problem guides us to considering the points [0, 2]T , [−1, 2]T , [0, 0]T ,(1p)
and [

√
3/2, 3/2]T (using the hint).

• For [0, 2]T , no constraint is active but the gradient of f is is zero.

• For [−1, 2]T , we find µ1 = 0 (g1 not active) and µ2 = 2.

• For [0, 0]T , we find µ1 = 4 and µ2 = 0 (g2 not active).

• For [
√

3/2, 3/2]T , we find µ1 = 1 and µ2 = 0 (g2 not active).

c) The smallest value among the KKT points is obtained at the point x̂ = [0, 0]T .(1p)
But f is unbounded from below on the feasible region, so x̂ is not globally optimal.
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Question 7(3p)

(Modelling)

For the hexagon in the below image, the area is given by the expression

1
2
2y(1)x(1)︸ ︷︷ ︸

left triangle

+ 1
2
(2y(1) + 2y(2))(x(2) − x(1))︸ ︷︷ ︸

trapezoid

+ 1
2
2y(2)(1− x(2))︸ ︷︷ ︸
right triangle

To make sure that no two points are further away than distance 1, we need the con-
straints √

(x(1) − 0)2 + (y(1) − 0)2 =
√

(x(1))2 + (y(1))2 ≤ 1√
(x(1) − x(1))2 + (y(1) − (−y(1)))2 = 2y(1) ≤ 1,√

(x(1) − x(2))2 + (y(1) − (−y(2)))2 =
√
(x(1) − x(2))2 + (y(1) + y(2))2 ≤ 1,√

(x(1) − 1)2 + (y(1) − 0)2 =
√

(x(1) − 1)2 + (y(1))2 ≤ 1√
(x(2) − 1)2 + (y(2) − 0)2 =

√
(x(2) − 1)2 + (y(2))2 ≤ 1√

(x(2) − x(2))2 + (y(2) − (−y(2)))2 = 2y(2) ≤ 1,√
(x(2) − 0)2 + (y(2) − 0)2 =

√
(x(2))2 + (y(2))2 ≤ 1.

The solution is to maximize the expression for the area, where x(1), y(1), x(2) and y(2) are
the variables, subject to the above constraints and x(1) ≤ x(2), y(1) ≥ 0, and y(2) ≥ 0.


