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Question 1(3p)

(The Frank-Wolf algorithm)

Consider the problem

minimize x2
1x

3
2 + x2

2

subject to − x1 + x2 ≤ 3

2x1 + x2 ≤ 12

x1 − 2x2 ≤ 2

x1 ≥ 0

x2 ≥ 0.

Start in the point x1 = 1 and x2 = 1 and perform one iteration in the Frank-Wolfe
algorithm. More precisely, this means that you have to: write down the correct sub-
problem for computing the search direction; solve the subproblem using a generally
valid solution method for this type of problem; compute the step length using exact
line search; perform the update and write down the new point. Carefully motivate all
steps and conclusions.

Question 2

(LP duality)

Consider the linear programming problem

minimize cTx

subject to Ax ≥ b,

x ≤ u,

where a A ∈ Rm×n, c ∈ Rn, b ∈ Rm, and u ∈ Rn.

a) Construct the LP dual of this primal linear programming problem.(2p)

b) Construct the dual LP of the dual LP.(1p)
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Question 3

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) Let f : Rn → R be continuously differentiable.(1p)

Claim: If ∇f(x0)
Tp ≥ 0, then p cannot be a descent direction with respect to f

at the point x0.

b) Let f : R2 → R, g1 : R2 → R, and g2 : R2 → R be defined by(1p)

f(x) = −
2∑

i=1

(
xi log(xi) + xi

)
,

g1(x) = cos(2πx1)− x2,

g2(x) = (x1 − 2)2 + (x2 − 2)2 − 2,

respectively.

Claim: The point x∗ = [1, 1]T is a globally optimal solution to

maximize f(x)

subject to g1(x) ≤ 0

g2(x) ≤ 0

x ∈ R2.

c) Let f1 : Rn → R and f2 : Rn → R be two convex functions.(1p)

Claim: The function f(x) := f1(x) + f2(x) is convex.



EXAM
TMA947/MMG621 — NONLINEAR OPTIMISATION 3

Question 4

(Weierstrass’ Theorem)

For each of the following functions fi, i = 1, 2, 3, motivate carefully whether or not a
global minimum is attained on the corresponding set Si, i = 1, 2, 3.

a) f1 : Rn → R given by f1(x) =
∑n

ℓ=1 x
2ℓ+1
ℓ and S1 = {x ∈ Rn | 0 ≤ xℓ ≤ 1, ℓ =(1p)

1, . . . , n}.

b) f2 : R → R given by(1p)

f2(x) =

{
1 if x = 0

|x| if |x| > 0

and S2 = {x ∈ R | −10 ≤ x ≤ 10}.

c) f3 : R2 → R given by f3(x) = x2
1 + ecos(2πx2) and S3 = {x ∈ R2 | 0 ≤ x2 ≤ 100}.(1p)

Question 5(3p)

(Optimality conditions for unconstrained problems and Convex quadratic programming)

Let f : Rn → R be given by f(x) = 1
2
xTQx + cTx, where c ∈ Rn and the symmetric

matrix Q ∈ Rn×n is positive semi-definite. Consider the problem

minimize f(x)

subject to x ∈ Rn.

Under what conditions on Q and c does this problem have a globally optimal solution?
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Question 6

(Global optimality conditions)

Let X ⊂ Rn, f : Rn → R, and gi : Rn → R for i = 1, . . . ,m. Consider the problem

(P)


infimum f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X.

Let f ∗ be the infimum for problem (P), and assume that −∞ < f ∗ < ∞. The
Lagrangian to (P) is defined as

L (x, µ) = f(x) +
m∑
i=1

µigi(x),

and a vector µ∗ ∈ Rm is called a Lagrangian multiplier if µ∗ ≥ 0 and

f ∗ = infimum L (x, µ∗)

subject to x ∈ X.

a) State the global optimality conditions for problem (P).(1p)

b) Prove the following theorem:(2p)

THEOREM: (x∗, µ∗) satisfies the global optimality conditions if and only if x∗ is
globally optimal to (P) and µ∗ is a Lagrangian multiplier.



EXAM
TMA947/MMG621 — NONLINEAR OPTIMISATION 5

Question 7(3p)

(Modelling)

A company is planning for where to locate a number of factories to produce a certain
product to sell. The goal of the planning is to find an arrangement of factories that
makes the total production as cheap as possible.

More specifically, the company wants to construct two types of factories. After an
initial investigation, they have found that the first type of factory can be placed in any
of the locations ai for i ∈ I := {1, . . . , ni}, and to construct such a factory in location
ai costs ei > 0 SEK. The second type of factory can be placed in any of the locations
bj, for j ∈ J := {1, . . . , nj}, and to construct such a factory in bj costs fj > 0 SEK.

The first type of factory produces a certain raw material. This raw material is needed
in the second type of factory. The second type of factory produces the end product
that the company sells. The costs for production of both the raw material and the end
product are not taken into account in the model.

Nevertheless, the cost for transporting raw material from factories of type one to facto-
ries of type two must be taken into account in the model. The cost for transporting raw
material from a factory of type one in location ai to a factory of type two in location
bj is cij > 0 SEK/kg of raw material transported, for i ∈ I and j ∈ J . However, trans-
portation between two factories can only be done if a road between the two factories
is constructed. Constructing a road between a factory of type one located in ai and a
factory of type two located in bj costs pij > 0 SEK, for i ∈ I and j ∈ J .

A factory of the first type in location ai produces hi > 0 kg of the raw material, which
can be transported to factories of the second type. Not all of the raw material produced
in a factory of type one must to be transported to a factory of type two. Furthermore,
if a factory of the second type is constructed in location bj, it must receive exactly
kj > 0 kg of raw material. From this raw material, a factory of the second type in
location bj produces ℓj > 0 units of the end product. The company wants to produce
at least L > 0 units of the end product.

Help the company by formulating an integer linear program, using the information
given above, that minimizes the cost for constructing factories, constructing roads,
and sending the raw material from factories of type one to factories of type two.

Hint 1: Consider introducing three sets of binary variables that models: where factories
of type one are constructed; where factories of type two are constructed; which roads
between factories of type one and type two that are constructed.

Hint 2: Consider introducing a set of variables that determines the amount of flow of
raw material from factories of type one to factories of type two. Make sure to formulate
the model so that there can be no flow between two factories if a road between them
has not been constructed.
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Question 1(3p)

(The Frank-Wolf algorithm)

Subproblem for computing search direction:
Let f(x) = x2

1x
3
2 + x2

2, which gives

∇f(x) =

[
2x1x

3
2

3x2
1x

2
2 + 2x2

]
=⇒ ∇f

([
1
1

])
=

[
2
5

]
.

The search direction p is given by p = y − [1, 1]T , where y is the optimal solution to
the subproblem

minimize 2y1 + 5y2

subject to − y1 + y2 ≤ 3

2y1 + y2 ≤ 12

y1 − 2y2 ≤ 2

y1, y2 ≥ 0.

Transforming the latter to standard form gives

minimize 2y1 + 5y2

subject to − y1 + y2 + s1 = 3

2y1 + y2 + s2 = 12

y1 − 2y2 + s3 = 2

y1, y2, s1, s2, s3 ≥ 0.

To solve the linear program with Simplex, we see that it is possible to start with s1,
s2, and s3 as basic variables (motivate!).

Simplex - Iteration 1:
With xB = [s1, s2, s3]

T and xN = [x1, x2, ]
T ,

B =

1 0 0
0 1 0
0 0 1

 , N =

−1 1
2 1
1 −2

 , cTB =
[
0 0 0

]
, cTN =

[
2 5

]
.

xB = B−1b = [3, 12, 2]T . The reduced costs are c̃TN = cTN − cTBB
−1N = [2, 5] ≥ 0.

Hence the point y∗ = [0, 0]T is optimal to the subproblem.

Line search and update:
The search direction is p = [0, 0]T − [1, 1]T = [−1, −1]T , and the exact line search
problem becomes

minimize f

([
1
1

]
+ α

[
−1
−1

])
= (1− α)5 + (1− α)2

subject to α ∈ [0, 1].

To optimal solution to this problem is α∗ = 1 (motivate!), and hence the new point is[
1
1

]
+ 1

[
−1
−1

]
=

[
0
0

]
.
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Question 2

(LP duality)

a) The LP dual is given by(2p)

maximize bTy − uT z

subject to ATy − z = c,

y ≥ 0,

z ≥ 0,

where y ∈ Rm and z ∈ Rn.

b) The dual of the dual is the primal. So it is(1p)

minimize cTx

subject to Ax ≥ b,

x ≤ u.

Question 3

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) False. A counterexample is given by f : R → R, f(x) = x3, x0 = 0, and p = −1.(1p)
∇f(x0)

Tp = 0 ≥ 0 but f(x0 + αp) = −α3 < 0 for all α > 0.

b) True. The relaxed problem obtained by removing constraint g1 is convex (moti-(1p)
vate why!), and x∗ = [1, 1]T is the unique globally optimal solution to the relaxed
problem (need to show that!). Since x∗ is feasible to both the original and the
relaxed problem, and since the objective function is the same in both problems,
x∗ is globally optimal to the original problem (motivate!).

c) True. The sum of convex functions is convex. For all x, y ∈ Rn and all α ∈ [0, 1](1p)

f(αx+ (1− α)y) = f1(αx+ (1− α)y) + f2(αx+ (1− α)y)

≤ αf1(x) + (1− α)f1(y) + αf2(x) + (1− α)f2(y)

= αf(x) + (1− α)f(y),

where the inequality follows by convexity of f1 and f2.
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Question 4

(Weierstrass’ Theorem)

For each of the following functions fi, i = 1, 2, 3, motivate carefully whether or not a
global minimum is attained on the corresponding set Si, i = 1, 2, 3.

a) f1 is continuous, and S1 is compact. Therefore, by Weierstrass’ Theorem there(1p)
exists a set of globally optimal solutions.

b) The infimum of f2 over S2 is 0 (why? motivate!), but the value is not attained(1p)
for any x. (Note: f2 is not lower semi-continuous.)

c) f3 is continuous, but S3 is not compact. However, every direction of unbound-(1p)
edness of S is such that x1 → ±∞ and hence f1 is weakly coercive with respect
to S1 (why? motivate!). Therefore, by Weierstrass’ Theorem there exists a set of
globally optimal solutions.

Question 5

(Optimality conditions for unconstrained problems and Convex quadratic programming)

The gradient and Hessian of f are given by

∇f(x) = Qx+ c, ∇2f(x) = Q.

Since Q is positive semi-definite, f is a convex function (motivate! Theorem 3.49).
Since f is convex, a point x is globally optimal if and only if ∇f(x) = 0 (motivate!
Theorem 4.18). Therefore, the problem has a globally optimal solution if and only if
the system of linear equations

Qx = −c

is solvable, i.e., if c lies in the column space of Q.

Note: if Q is positive definite, it is invertible and thus Qx = −c has a unique solution for all c (if

Q is positive definite, then f is also strictly convex). Since Q is positive semi-defintie, if it is not

positive definite then it has at least one eigenvalue that is zero. In this case, Q has a non-trivial

kernel and Qx = −c has a solution if and only if c lies in the column space of Q. If c does not lay

in the column space of Q, then there exists a vector v such that Qv = 0 and cT v < 0. In this case,

for k ∈ {1, 2, 3, . . .} and x(k) = kv we have f(x(k)) = (x(k))TQx(k) + cTx(k) = k(cT v), and hence the

sequence {x(k)}∞k=1 shows that the problem is unbounded from below, i.e., limk→∞ f(x(k)) = −∞.

Therefore, the problem admits no optimal solution in this case.
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Question 6

(theory question - global optimality conditions)

a) See Theorem 6.8 in the book.(1p)

b) See Theorem 6.8 in the book.(2p)
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Question 7(3p)

(modelling)

For each i ∈ I, introduce

xi =

{
1 factory of type one constructed in ai

0 else,

and each j ∈ J , introduce

yj =

{
1 factory of type two constructed in bj

0 else.

Moreover, for all i ∈ I and all j ∈ J , also introduce

zij =

{
1 if link between factory of type one in ai and factory of type two in bj is constructed,

0 else,

and vij = weight (in kg) of raw material sent from factory of type one in ai to factory of
type two in bj. Finally, letM be a large positive constant (M ≥ max{maxi∈I hi,maxj∈J kj}
suffices). An integer linear program can be formulated as

minimize
I∑

i=1

eixi +
J∑

j=1

fjyj +
I∑

i=1

J∑
j=1

cijvij +
I∑

i=1

J∑
j=1

pijzij

subject to
J∑

j=1

vij ≤ hixi, i ∈ I, (constructed type one can send maximum amount)

I∑
i=1

vij = kjyj, j ∈ J, (constructed type two wants exact amount)

vij ≤ Mzij, i ∈ I, j ∈ J, (can only send on constructed roads)

J∑
j=1

ℓjyj ≥ L, j ∈ J, (constructed type two must produce sufficient total)

xi ∈ {0, 1}, i ∈ I,

yj ∈ {0, 1}, j ∈ J,

zij ∈ {0, 1}, i ∈ I, j ∈ J,

vij ≥ 0, i ∈ I, j ∈ J.

Note that we do note need constraints to enforce that zij = 0 if xi = 0 or yj = 0, since
the goal is to minimize the cost and pij > 0.


