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Question 1(3p)

(the simplex method)

Consider the following linear program:

minimize 8x1 − x2 − 2x3

subject to 3x1 + 2x2 ≤ 21,

− 3x1 + x2 + x3 ≤ 7,

x1, x2, x3 ≥ 0.

Solve it using the simplex method (phase II), and start with x1 and x3 as basic variables.

Hint: You may find the following identity useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Question 2(3p)

(Lagrangian duality)

Consider the problem

minimize
n∑

i=1

ai

(
xi log(xi)− xi

)
,

subject to
n∑

i=1

bixi = 1,

xi ≥ 0, i = 1, . . . , n,

where log denotes the natural logarithm, ai > 0 for all i = 1, . . . , n, bi > 0 for all
i = 1, . . . , n, and 0 log(0) is defined to be equal to 0. Lagrangian relax the constraint∑n

i=1 bix1 = 1 and derive the Lagrangian dual problem. You have to wright the dual
problem explicitly, but you do not have to solve it.

Note: The fact that 0 log(0) is defined to be equal to 0 makes the cost function con-
tinuous on the entire domain Rn

+ := {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}.
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Question 3

(global convergence of exterior penalty method)

Consider the problem

(P)


minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ,

x ∈ Rn,

and let

S = {x ∈ Rn | gi(x) ≤ 0, for i = 1, . . . ,m, and hj(x) = 0, for j = 1, . . . , ℓ}.

Also consider the transformed problem

(Pν)

{
minimize f(x) + νχ̌S(x),

subject to x ∈ Rn,

where

χ̌S(x) =
m∑
i=1

ψ(max{0, gi(x)}) +
ℓ∑

j=1

ψ(hj(x)).

a) Define R+ := {x ∈ R | x ≥ 0}. What condition must the function ψ : R → R+(1p)
satisfy for us to call (Pν) an exterior penalty transformation of (P)?

b) A function ψ : R → R+ that fulfills the conditions asked for in part a) is called(2p)
an exterior penalty function. Prove the following theorem.

THEOREM: Let ψ be an exterior penalty function, and assume that (P) has
at least one globally optimal solution. For each value of ν, let x∗ν be a globally
optimal solution to (Pν). Then every limit point of the sequence {x∗ν}, ν → ∞,
is a globally optimal solution to (P).

Hint: The following result might be useful. You may use it without proving it.

LEMMA: Let x∗ν1 and x∗ν2 be globally optimal to (Pν) for penalty parameters ν1
and ν2, respectively. If ν1 ≤ ν2, then f(x

∗
ν1
) ≤ f(x∗ν2).
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Question 4

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) Let f : Rn → R be twice contiunously differentiable.(1p)

Claim: For the unconstrained optimization problem minx∈Rn f(x), the conditions
i) ∇f(x∗) = 0, and ii) ∇2f(x∗) is positive semi-definite, are sufficient for x∗ to
be a local minimum.

b) Let f : Rn → R be continuously differentiable.(1p)

Claim: For p to be a descent direction with respect to f at the point x0, it is
sufficient that ∇f(x0)Tp < 0.

c) Let f : Rn → R be twice continuously differentiable and strictly convex.(1p)

Claim: The problem to minimize f over Rn has a unique optimal solution.

Question 5

(the Karush-Kuhn-Tucker (KKT) conditions)

Consider the problem 
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , 3,

x ∈ R2,

where

f(x) = −(x1 − 1)2,

g1(x) = −x31 + x2,

g2(x) = x21 + x22 − 2,

g3(x) = −x2 ≤ 0.

a) Express the Karush-Kuhn-Tucker (KKT) conditions for the problem.(1p)

b) Find all KKT points, i.e., all points x that satisfy the KKT conditions. Solutions(1p)
based on graphical considerations are allowed, but they need to be supplemented
with exact mathematical expressions and calculations motivating the conclusions.

Hint: The only point for which g1 and g2 can both be active is x1 = x2 = 1.

c) Which of the KKT points have smallest objective function value? Is this KKT(1p)
point globally optimal?
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Question 6(3p)

(modelling)

A friend of yours, we can call the person AR, is planning a road trip. AR has decided
to visit a number of cities 1, . . . , n, and the trip is such that from city i AR will drive
to city i+ 1, for i = 1, . . . , n− 1.

For the trip, AR has rented an electric car. The car is picked up in city 1 and returned
in city n, and AR is now planning how to charge the car during the trip in order
to minimize the cost of charging. More specifically, the car battery has a maximum
energy capacity of K kWh (kilowatt-hours), and when picking up the car the battery
is fully charged. When returning the car, the battery needs to be at least 60% charged.
Moreover, to drive from city i to city i + 1 the total energy needed for the car is
ei kWh, for i = 1, . . . , n − 1. In each city, AR will be able to charge the car between
0 and a maximum of ti hours, for i = 2, . . . , n. The power output from the charging
stations in each city is pi kW (kilowatts), and the cost for charging is ci SEK/kWh, for
i = 2, . . . , n. In particular, note that AR can charge the car in the last city n before
returning it to the car rental shop.

Help AR finding the cheapest way to charge the car, while also being able to complete
the whole trip. Formulate it as a linear programming problem.

Hint 1: Consider introducing two sets of variables. One set that represents the amount
of energy charged in a city, and one that represents the amount of energy in the battery
at different points/times.

Hint 2: Charging a battery at a charging station with power output p kW for t hours
results in a total energy in the battery of pt kWh.

Question 7(3p)

(unconstrained optimization - Newton’s method with Levenberg-Marquardt modification)

Consider the unconstrained optimization problem

minimize f(x)

subject to x ∈ R2,

where f : R2 → R is given by

f(x) =
1

4
x41 − 3x21x

2
2 + 2x1x

3
2 + x42 − x1 + x22.

Starting in the point [x1, x2]
T = [0, 0]T , perform one iteration in Newton’s method

using the Levenberg-Marquardt modification. In particular, select the modification
parameter γ > 0 as the smallest integer so that the conditions needed are fulfilled.
Moreover, use step length α1 = 2.
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Question 1(3p)

(the simplex method)

Transforming the problem to standard form gives

minimize 8x1 − x2 − 2x3

subject to 3x1 + 2x2 + s1 = 21,

− 3x1 + x2 + x3 + s2 = 7,

x1, x2, x3, s1, s2 ≥ 0.

Iteration 1:
With xB = [x1, x3]

T and xN = [x2, s1, s2]
T ,

B =

[
3 0
−3 1

]
, N =

[
2 1 0
1 0 1

]
, cTB =

[
8 −2

]
, cTN =

[
−1 0 0

]
.

xB = B−1b = [7, 28]T . The reduced costs are c̃TN = cTN − cTBB
−1N = [−1/3, −2/3, 2],

and hence (xN)2 = s1 enters the basis. B−1N2 = [1/3, 1]T , and for the minimum
ration test we thus get i = argmink{ 7

1/3
, 28

1
} = argmink{21, 28} = 1. This means that

(xB)1 = x1 leaves the basis.

Iteration 2:
With xB = [x3, s1]

T and xN = [x1, x2, s2]
T ,

B =

[
0 1
1 0

]
, N =

[
3 2 0
−3 1 1

]
, cTB =

[
−2 0

]
, cTN =

[
8 −1 0

]
.

xB = B−1b = [7, 21]T . The reduced costs are c̃TN = cTN − cTBB
−1N = [2, 1, 2]. Hence

the point x∗ = [0, 0, 7]T is optimal.
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Question 2(3p)

(Lagrangian duality)

Relaxing the constraint with a multiplier µ ∈ R, we get the Lagrangian

L (x, µ) =
n∑

i=1

ai

(
xi log(xi)− xi

)
+ µ

(
n∑

i=1

bixi − 1

)
.

Introducing X := {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}, the dual function is given by
q(µ) = infx∈X L (x, µ). For each fixed µ, L (x, µ) is convex in x (motivate!) and X
is a convex set. This means that infx∈X L (x, µ) is a convex optimization problem. If
there is a point x∗ ≥ 0 such that ∇xL (x∗, µ) = 0, then x∗ solves infx∈X L (x, µ) (why?
motivate!). To this end, we consider the equation

0 =
∂L (x, µ)

∂xi
= ai log(xi) + µbi,

which has a solution x∗i = e−µbi/ai > 0. This holds for i = 1, . . . , n, and with x∗ = [x∗i ]
n
i=1

we therefore have that

q(µ) = inf
x∈X

L (x, µ) = L (x∗, µ)

=
n∑

i=1

ai

(
e−µbi/ai(−µbi/ai)− e−µbi/ai

)
+ µ

(
n∑

i=1

bie
−µbi/ai − 1

)

= −µ−
n∑

i=1

aie
−µbi/ai .

The dual problem is thus

maximize − µ−
n∑

i=1

aie
−µbi/ai ,

subject to µ ∈ R.

Question 3

(theory question - global convergence of exterior penalty method)

a) ψ must be continuous, and ψ(s) = 0 if and only if s = 0; see Section 13.1.1 in(1p)
the book.

b) See Theorem 13.3 in the book.(2p)
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Question 4

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) False. The conditions are necessary for x∗ to be a local minimum but not suffi-(1p)
cient. For example, let f : R → R be given by f(x) = x3. In x∗ = 0 we have that
∇f(x∗) = 0 and ∇2f(x∗) = 0. But x∗ is not a local minimum.

b) True. Since f is continuously differentiable, in a neighbourhood of the given point(1p)
x0 we have the Taylor series expansion

f(x0 + αp) = f(x0) + α∇f(x0)Tp+ o(α).

Since∇f(x0)Tp < 0 and limα↘0 o(α)/α = 0, there exists a sufficiently small δ > 0
so that for all α ∈ (0, δ] we have that f(x0 + αp) < f(x0), i.e., p is a descent
direction with respect to f at the point x0.

c) False. A counterexample is given by f(x) = ex.(1p)
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Question 5

(the Karush-Kuhn-Tucker (KKT) conditions)

a) The KKT conditions are(1p)

∇f(x) +
3∑

i=1

µi∇gi(x) =
[
−2x1 + 2

0

]
+ µ1

[
−3x21
1

]
+ µ2

[
2x1
2x2

]
+ µ3

[
0
−1

]
=

[
0
0

]
µi ≥ 0, i = 1, 2, 3

gi(x) ≤ 0, i = 1, 2, 3

µigi(x) = 0, i = 1, 2, 3.

b) The KKT points can be found by going over all possible combinations of con-(1p)
straints that can be active together:

• with no constraint active, the KKT points are given by ∇f(x) = 0, which
gives x1 = 1 and x2 ∈ [0, 1]. So x1 = 1 and x2 ∈ [0, 1], with µ1 = µ2 = µ3 = 0
are all KKT points.

• with g1 active, we get that we must have µ1 = 0. This in turn implies that
we must have x1 = 1, and since g1 is active thus that we must have x2 = 1.
This (again) gives the valid KKT point x1 = x2 = 1 with µ1 = µ2 = µ3 = 0.

• with g1 and g2 active, the only possible point is x1 = x2 = 1. Using this,
we find that we must have µ1 = µ2 = 0. This (again) gives the valid KKT
point x1 = x2 = 1 with µ1 = µ2 = µ3 = 0.

• with g2 active, either we must have µ2 = 0, in which case x1 = 1, which
in turn implies that x2 = 1 (in order to be active on g2). Or x2 = 0, in
which case we must have x1 =

√
2 (in order to be active on g2), and hence

µ2 = 1 − 1/
√
2 > 0. This (again) gives the valid KKT point x1 = x2 = 1

with µ1 = µ2 = µ3 = 0, as well as the valid KKT point x1 =
√
2, x2 = 0,

with µ2 = 1− 1/
√
2 and µ1 = µ3 = 0.

• with g2 and g3 active, x2 = 0 and x1 =
√
2 is the only possible point. This

gives µ2 = 1− 1/
√
2 > 0 and µ3 = 0. Hence, it (again) gives the valid KKT

point x1 =
√
2, x2 = 0, with µ2 = 1− 1/

√
2 and µ1 = µ3 = 0.

• with g3 active, we have x2 = 0. We also find that we must have µ3 = 0
and hence that x1 = 1. This (again) gives the valid KKT point x1 = 1 and
x2 = 0, with µ1 = µ2 = µ3 = 0.

• with g1 and g3 active, the only feasible point is x1 = x2 = 0. However, this
is not a KKT point since[

2
0

]
+ µ1

[
0
1

]
+ µ3

[
0
−1

]
̸=
[
0
0

]
for any µ1, µ3.

c) The smallest value among the KKT points is obtained at the point x̂ = [
√
2, 0]T .(1p)

But f(x̂) = −3 + 2
√
2 > −3 + 2 = −1 = f(x̃), where x̃ = [0, 0]T , so x̂ is not

globally optimal.
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Question 6(3p)

(modelling)

Introduce the variables

xi = amount of energy (kWh) charged in city i

for i = 2, . . . , n, and

yi = amount of energy (kWh) in the battery when leaving city i

for i = 1, . . . , n, and where yn is interpreted as the amount of energy (kWh) in the
battery when returning the car to the rental agency. A linear program for minimizing
cost of charging can be formulated as

min
xi, i=2,...,n
yi, i=1,...,n

n∑
i=2

cixi

subject to y1 = K, (fully charged when picking up)

yn ≥ 0.6K, (minimum energy when returning)

yi = yi−1 − ei−1 + xi, i = 2, . . . , n, (change in energy after trip + recharge)

yi ≥ ei, i = 1, . . . , n− 1, (sufficient energy for each trip)

yi ≤ K, i = 2, . . . , n, (maximum energy in battery)

xi ≤ piti, i = 2, . . . , n, (maximum energy possible to charge)

yi ≥ 0, i = 1, . . . , n,

xi ≥ 0, i = 2, . . . , n.

Question 7(3p)

(Unconstrained optimization - Newton’s method with Levenberg-Marquardt modification)

Computing the gradient and Hessian, we have that

∇f(x) =
[

x31 − 6x1x
2
2 + 2x32 − 1

−6x21x2 + 6x1x
2
2 + 4x32 + 2x2

]
, ∇2f(x) =

[
3x21 − 6x22 −12x1x2 + 6x22

−12x1x2 + 6x22 −6x21 + 12x1x2 + 12x22 + 2

]
.

This means that

∇f(0) =
[
−1
0

]
, ∇2f(0) =

[
0 0
0 2

]
.

The smallest modification parameter γ > 0 so that ∇2f(0) + γI is positive definite,
and so that γ is also an integer, is thus γ = 1, which gives

∇2f(0) + 1I =

[
1 0
0 3

]
.

The search direction is thus p1 = −(∇2f(0)+1I)−1∇f(0) = [1, 0]T , and the new point
is [

0
0

]
+ 2

[
1
0

]
=

[
2
0

]
.


