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Question 1

(Lagrangian duality)

Consider the problem

minimize 2x2
1 − 3x2,

subject to x2 ≤ x2
1,

− 1 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1.

a) Lagrangian relax the first constraint with a multiplier µ ≥ 0, i.e., the constraint(2p)
x2 ≤ x2

1, and derive the dual function q(µ).

Hint: For X := {x ∈ R2 | −1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, an explicit solution to
minx∈X L (x, µ) can be found for each µ in this case.

b) Compute a subgradient to q(µ) in the point µ = 1.(1p)

Question 2

(theory question - sufficiency of KKT conditions for convex problems)

Consider the problem

(P)


minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ,

x ∈ Rn.

a) State the Karush-Kuhn-Tucker (KKT) conditions for problem (P).(1p)

b) A point x is called a KKT point to (P) if there is a solution to the KKT conditions(2p)
corresponding to (P) in the point x. Prove the following theorem:

THEOREM: Consider the problem (P), and let

S = {x ∈ Rn | gi(x) ≤ 0, for i = 1, . . . ,m, and hj(x) = 0, for j = 1, . . . , ℓ}.

Assume that the functions f and gi(x), for i = 1, . . . ,m, are all convex, and that
hj(x), for j = 1, . . . , ℓ, are all affine. If x∗ ∈ S, then

x∗ is a KKT point to (P) =⇒ x∗ is a global minimizer to (P).
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Question 3(3p)

(the simplex method)

Consider the following linear program:

minimize − x1 − 2x2 + 4x3

subject to 2x1 + 3x3 ≤ 7,

x1 + x2 − 3x3 ≤ 7,

x1, x2, x3 ≥ 0.

Solve it using the simplex method (phase II), and start with x1 and x2 as basic variables.

Hint: You may find the following identity useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Question 4(3p)

(modelling)

A friend of yours, we can call the person AR, has realized that the person has too many
things at home. On day, AR therefore decides to sell some of the things at a local flea
market. To this end, AR first makes a list I = {1, 2, . . . , n} of things that are up for
sale. For each object i ∈ I, AR sets the price ci. However, for certain items the price
will depend on what other items are also brought by AR to be sold at the flea market.
For example: AR has two copies of the same book, and one is in better condition than
the other. If both are brought to the flea market, the book in worse condition will have
to be sold at a reduced price. On the other hand, AR has two candlesticks of the same
sort, and selling them together can motivate a higher, premium, price compared to if
only one is brought and sold. This type of price adjustments, i.e., the influence an item
i ∈ I has on price of another item j ∈ I, are recorded as pij, for i, j ∈ I. In particular,
pii = 0 for all i ∈ I. Also note that one might have pij ̸= pji, as in the example with
the two books: the book i ∈ I in good condition lowers the price of the book j ∈ I in
bad condition (i.e., pij < 0), but the book in bad condition does not affect the price of
the book in good condition (i.e., pji = 0).

AR will bring the items to the flea market in a backpack. Each item i ∈ I has a certain
weight, and AR can carry at most a certain maximum total weight. Moreover, in order
for the table at the flea market to look appealing, it should neither be crowded with
things nor should it be half-empty. Therefore, AR wants to bring at least a certain
number of items, but also at most a certain number of items. Help AR decide which
items to bring to the flea market in order to maximize the profit (assuming that all
items brought are indeed sold). Introduce appropriate constants (in addition to ci for
i ∈ I and pij for i, j ∈ I), introduce appropriate variables, and formulate the decision
problem as an integer linear program.



EXAM
TMA947/MMG621 — NONLINEAR OPTIMISATION 3

Question 5

(interior penalty method)

Consider the problem

minimize x2
1 + (x2 + 1)2

subject to 2x1 − x2 + 3 ≤ 0.

a) Prove that the point(0.5p)

x∗ =

[
−8

5

−1
5

]
is globally optimal to the problem.

b) Consider solving the problem using an interior penalty method. The penalty(1.5p)
problem is to solve

min
x∈R2

f(x) + νχ̂(x),

where χ̂(x) = ϕ(g(x)). Use the logarithmic barrier function

ϕ(s) = − log(−s),

and compute the optimal solution to the penalty problem, i.e., compute the
optimal x∗(ν) as a function of ν. Show that x∗(ν) → x∗ when ν → 0.

c) For each ν, an estimate of the multiplier in the KKT system is given by(1p)

µ(ν) := νϕ′(g(x∗(ν))),

where ϕ′ denotes the derivative of ϕ. Show that µ(ν) → µ∗ when ν → 0, where
µ∗ is the multiplier in the KKT system corresponding to x∗.

Hint: You may find the following result useful (L’Hôpital’s rule): Let h1, h2 : R →
R be continuously differentiable, and let h′

1(x) and h′
2(x) denote the corresponding

derivatives. If limx→c h1(x) = limx→c h2(x) = 0, and if limx→c h′
2(x) ̸= 0, then

lim
x→c

h1(x)

h2(x)
= lim

x→c

h′
1(x)

h′
2(x)

,

given that the latter limit exists.
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Question 6

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) Let(1p)

A =

[
−1 1 2
0 −5 −1

]
, b =

[
1
−2

]
.

Claim: The polyhedron S := {x ∈ R3 | Ax ≤ b, x ≥ 0} is nonempty.

b) Let f : R2 → R, g1 : R2 → R, and g2 : R2 → R be defined by(1p)

f(x) = x2
1 + x2

2,

g1(x) = (x1 − 2)2 + x2
2 − 1,

g2(x) = x1 −
1

2
cos(2πx2)− 2,

respectively.

Claim: The point x∗ = [1, 0]T is a globally optimal solution to

min
x∈R2

f(x)

subject to g1(x) ≤ 0

g2(x) ≤ 0.

c) Consider f : R3 → R defined by(1p)

f(x) = (1− x1x2)
2 + x2

1 + (x2
1 + x3)

2.

Claim: The optimization problem

inf f(x)

subject to x ∈ R3

attains a global minimum.
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Question 7(3p)

(The gradient projection method)

The gradient projection method can be used to solve problems of the form

minimize f(x)

subject to x ∈ S.

Assume that S is convex. Given an iterate xk, the method computes a new iterate as

xk+1 = ProjS(x
k − αk∇f(xk)),

where
ProjS(y) := argmin

x∈S
∥x− y∥.

Consider f(x) = (x1 + 1)2 + (x2 + 1)4 and S = {x ∈ R2 | x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥
0}. Start in the point x0 = [1, 1]T and perform two steps in the gradient projection
algorithm using the constant step length αk = 1/4 for all k. The projection step in
the algorithm can be solved graphically, but a clear motivation must be given. Is the
obtained point x2 locally and/or globally optimal? Motivate your answer.
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Question 1

(Lagrangian duality)

a) The dual function q(µ) = infx∈X L (x, µ) is given by(2p)

q(µ) =
min (2− µ)x2

1 − (3− µ)x2
2

subject to −1 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

=


−3 + µ if µ ≤ 2,

−1 if 2 ≤ µ ≤ 3,

2− µ if µ ≥ 3,

where minimizers of the Lagrangian are attained in x = [0, 1]T for µ ≤ 2, in
x = [±1, 1]T for 2 ≤ µ ≤ 3, and in x = [±1, 0]T for µ ≥ 3.

Note: for µ = 2, all minimizers of the Lagrangian are given by x = [a, 1]T for a ∈ [−1, 1], and

for µ = 3 they are given by x = [±1, b]T for b ∈ [0, 1].

b) The function is differentiable in the point, so the only subgradient is ∇q(1) = 1.(1p)

Question 2

(theory question - sufficiency of KKT conditions for convex problems)

a) See equation (5.17) in the book.(1p)

b) See Theorem 5.49 in the book.(2p)
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Question 3(3p)

(the simplex method)

Transforming the problem to standard form gives

minimize − x1 − 2x2 + 4x3

subject to 2x1 + 3x3 + s1 = 7,

x1 + x2 − 3x3 + s2 = 7,

x1, x2, x3, s1, s2 ≥ 0.

Iteration 1:
With xB = [x1, x2]

T and xN = [x3, s1, s2]
T ,

B =

[
2 0
1 1

]
, N =

[
3 1 0
−3 0 1

]
, cTB =

[
−1 −2

]
, cTN =

[
4 0 0

]
.

xB = B−1b = [7/2, 7/2]T . The reduced costs are c̃TN = cTN−cTBB
−1N = [−7/2, 1/2, −2],

and hence (xN)1 = x3 enters the basis. BTN1 = [3/2, −9/2]T , and since only the first
component is positive we have that (xB)1 = x1 leaves the basis.

Iteration 2:
With xB = [x2, x3]

T and xN = [x1, s1, s2]
T ,

B =

[
0 3
1 −3

]
, N =

[
2 1 0
1 0 1

]
, cTB =

[
−2 −4

]
, cTN =

[
−1 0 0

]
.

xB = B−1b = [14, 7/3]T . The reduced costs are c̃TN = cTN−cTBB
−1N = [7/3, 2/3, 2] ≥ 0.

Hence the point x∗ = [0, 14, 7/3]T is optimal.
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Question 4(3p)

(modelling)

For each i ∈ I, introduce

xi =

{
1 if items i is brought to the flea market

0 else.

For each (i, j) ∈ I × I, introduce

zij =

{
1 if item i and j are both brought to the flea market

0 else.

An integer linear program for maximizing the sell price can be formulated as

max
n∑

i=1

cixi +
n∑

i=1

n∑
j=1

pijzij

subject to
n∑

i=1

mixi ≤ M (total weight constraint)

n∑
i=1

xi ≥ a, (not too few items)

n∑
i=1

xi ≤ b, (not too many items)

zij ≤
1

2
(xi + xj), ∀i, j ∈ I, (1)

zij ≥ −1 + xi + xj ∀i, j ∈ I, (2)

xi ∈ {0, 1}, ∀i ∈ I,

zij ∈ {0, 1}, ∀i, j ∈ I.

The constraints (1) and (2), together with zij ∈ {0, 1}, make sure that zij = 0 if at
most one of the items i ∈ I and j ∈ I are brought, and zij = 1 if both are brought.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 4

Question 5

(interior penalty method)

The given problem is

minimize f(x) := x2
1 + (x2 + 1)2

subject to g(x) := 2x1 − x2 + 3 ≤ 0.

a) The problem is convex (need to motivate!) and since all constraints are affine(0.5p)
Abadie’s CQ holds. Therefore, KKT is both necessary and sufficient for global
optimality. Moreover, g(x∗) = 0, so the constraint is active. The KKT system in
the point x∗ is thus[

0
0

]
=

[
2 ∗

(
−8

5

)
2 ∗

(
−1

5

)
+ 2

]
+ µ

[
2
−1

]
=

[
−16

5
8
5

]
+ µ

[
2
−1

]
which has a solution µ∗ = 8/5. Hence the point is globally optimal.

b) The barrier transformed problem takes the form(1.5p)

minx2
1 + (x2 + 1)2 − ν log(−2x1 + x2 − 3).

This is a convex problem on X := {x ∈ R2 | g(x) < 0}, since f(x) = x2
1+(x2+1)2

is convex, and since g(x) = 2x1 − x2 + 3 is convex and ϕ(s) is convex and non-
decreasing on X (see Proposition 3.44).

The global optimal solution to the barrier transformed problem is thus given by[
0
0

]
=

[
2x1 + 2ν 1

−2x1+x2−3

2x2 + 2− ν 1
−2x1+x2−3

]
.

From this, it follows that 2x1 + 2(2x2 + 2) = 0, and solving this for x2 gives

x2 = −1

2
x1 − 1.

Substituting this back into the first equation above and rearranging terms gives

5

2
x2
1 + 4x1 − ν = 0 =⇒ x1(µ) = −4

5
±
√

16

25
+

2

5
ν.

This in turn gives

x2(ν) = −1

2
x1(ν)− 1 = −3

5
∓ 1

2

√
16

25
+

2

5
ν.

To see which sign to use we look at which point is strictly feasible:

0 ≥ 2x1(µ)− x2(µ) + 3 = . . . = 2± 5

3

√
16

25
+

2

5
ν,
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and hence we need to choose the negative root for the first cooridnate and thus
the positive root for the second coordinate, i.e.,

x∗
1(µ) = −4

5
−
√

16

25
+

2

5
ν,

x∗
2(µ) = −3

5
+

1

2

√
16

25
+

2

5
ν.

Now

lim
ν→0

x∗(ν) = lim
ν→0

−4
5
−
√

16
25

+ 2
5
ν,

−3
5
+ 1

2

√
16
25

+ 2
5
ν

 =

[
−4

5
− 4

5
,

−3
5
+ 1

2
4
5

]
=

[
−8

5

−1
5

]
= x∗.

c) We get that(1p)

µ(ν) := νϕ′(g(x(ν))) =
ν

−2x∗
1(ν) + x∗

2(ν)− 3
= . . . =

ν

−2 + 5
2

√
16
25

+ 2
5
ν
:=

h1(ν)

h2(ν)
.

Using L’Hôpital’s rule, we find that

lim
ν→0

h1(ν)

h2(ν)
= lim

ν→0

h′
1(ν)

h′
2(ν)

= lim
ν→0

1

5
2

− 1
2√

16
25

+ 2
5
ν

2
5

=
8

5
= µ∗
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Question 6

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) True. E.g., the point x = [0, 1, 1]T can be verified to be in the polyhedron.(1p)

Another approach: introduce slack variables and consider the polyhedron S ′ =
{Ãx̃ = b, x̃ ≥ 0}, where

x̃ =


x1

x2

x3

s1
s2

 , A =

[
−1 1 2 1 0
0 −5 −1 0 1

]
, b =

[
1
−2

]
.

S is nonempty if and only if S ′ is. By Farkas’ lemma, exactly one of the two
systems {

Ãx̃ = b

x̃ ≥ 0
and

{
ÃTy ≤ 0

bTy > 0

has a solution. By direct calculations, it is easily concluded that ÃTy ≤ 0 implies
that y = [0, 0]T ; this can also be seen if the corresponding set is drawn graphically.
Hence, the second system does not have a solution. Therefore, the first system
has a solution, and thus S is nonempty.

b) True. The relaxed problem obtained by removing the constraint g2(x) ≤ 0 is a(1p)
convex problem. It is easily verified that the given point x∗ is a global optimal
solution to the relaxed problem. Since it is feasible to the original problem, by
the relaxation theorem it must thus be a globally opitmal solution to the original
problem.

c) False. f is bounded from below by 0, but does not attain it. It is a sum of three(1p)
squares and thus nonnegative. However, the first and the second square terms
cannot be zero at the same time, since for the second to equal zero we must have
x1 = 0. Nevertheless, for any α > 0, let xα = [1/α, α,−1/α2]T . This gives

f(xα) =

(
1− 1

α
α

)2

+
1

α2
+

(
1

α2
− 1

α2

)2

=
1

α2
→ 0

as α → ∞. Hence, the infimum is 0, but no minimizer is attained.

One way to come up with the idea for the parametrization of xα is to try to solve
∇f(x) = 0. The equation has no solution, which means that no finite point can
be optimal. But the second and third component of the gradient are zero in xα.

Note: f is not weakly coercive on R3, and thus Weierstrass’ theorem cannot be applied.
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Question 7(3p)

(The gradient projection method)

We compute the gradient of f :

∇f(x) =

[
2(x1 + 1)
4(x2 + 1)3

]
.

To perform the first iteration, let

x̃1 = x0 − 1

4
∇f(x0) =

[
1
1

]
− 1

4

[
4
32

]
=

[
0
−7

]
.

The next iterate is thus x1 = ProjS(x̃
1), which can either be solved graphically or

analytically. In any case, it is found that x1 = [0, 0]T .

To perform the second iteration, let

x̃2 = x1 − 1

4
∇f(x1) =

[
0
0

]
− 1

4

[
2
4

]
=

[
−1

2

−1

]
.

The next iterate is thus x2 = ProjS(x̃
2), which can either be solved graphically or

analytically. In any case, it is found that x2 = [0, 0]T .

Since the cost function is convex and the constraints are given by a polyhedron, the
problem is convex. Moreover, the last iteration shows that the point x∗ = [0, 0]T is
stationary, and since the problem is convex it is thus a globally optimal solution (see
Theorem 4.23 and Proposition 4.25).


