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Exam instructions

When you answer the questions

Use generally valid theory and methods.
State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.
Do not answer more than one question per page.
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Question 1

(the simplex method)

Consider the following linear program:

maximize z = x1 + 2x2,

subject to x1 + x2 ≥ −1,

x1 − x2 ≥ 1,

x1, x2 ≥ 0.

a) Solve the problem using phase I and phase II of the simplex method.(2p)

Aid: You may utilize the identity(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

b) If an optimal solution exists, then use your calculations to decide whether it is(1p)
unique or not. If the problem is unbounded, then use your calculations to specify
a direction of unboundedness of the objective value.

Question 2(3p)

(Lagrangian duality and convexity)

Consider the problem to find

f ∗ = infimum (x1 − 1)2 − 2x2,

subject to x1 − 2x2 ≥ −2, (C)

x1, x2 ≥ 0.

Lagrangian relax the constraint (C), and evaluate the dual function q at µ = 0 and
µ = 2. Provide a bounded interval containing f ∗.
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Question 3(3p)

(modelling)

The set covering problem is a classical question in combinatorics, computer science and
complexity theory. Given a set of elements U = {1, 2, ..., n} (called the universe) and
a collection S of m sets whose union equals the universe, the set cover problem is the
problem to identify the smallest sub-collection of S whose union equals the universe.

For example, consider the universe U = {1, 2, 3, 4, 5} and the collection of sets S =
{{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}. Clearly the union of S is U . However, we can cover all
of the elements with the following, smaller number of sets: {{1, 2, 3}, {4, 5}}. This is
also the smallest sub-collection whose union is U .

A generalization of this problem is the weighted set covering problem where each set in
S has a cost associated with it. The objective in the weighted set covering problem is
to find a sub-collection of S whose union equals the universe, and so that the sum of
the costs of the sets in the sub-collection is minimized.

Formulate an integer linear program (a linear objective function, linear constraints,
and integrality restrictions on the variables) which models the weighted set covering
problem.

Question 4

(True or False)

The below three claims should be assessed. For each claim: state whether it is true or
false. Provide an answer together with a short but complete motivation.

a) Suppose the function f : Rn → R is differentiable at a vector x ∈ Rn.(1p)

Claim: for the vector p ∈ Rn to be a descent direction with respect to f at x it
is necessary that ∇f(x)Tp < 0.

b) Claim: For the phase I (when a BFS is not known a priori) problem of the(1p)
simplex algorithm, the optimal value is always zero.

c) Consider a convex function f : Rn 7→ R.(1p)

Claim: If f is differentiable at a point x̄ ∈ Rn, then the identity ∂f(x̄) =
{∇f(x̄)} holds.
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Question 5

(unconstrained optimization)

Consider the unconstrained problem to minimize the function

f(x1, x2) = x2
1 + x1x2 − x2

2 + 2x1

a) Start in x0 = (0, 0)T and perform two iterations with the steepest descent method(1p)
using the step length αk = 1 in each iteration. Is the point reached an optimal
solution?

b) Start in x0 = (0, 0)T and perform two iterations with the Newton method using(2p)
the Levenberg-Marquardt modification with γ = 3. Use step length αk = 1 in
each iteration. Is the point reached an optimal solution?

Question 6

(Karush-Kuhn-Tucker)

Consider the following problem:

minimize f(x) := −(x1 − 3)2 − (x2 − 1)2,

subject to x1 + x2 ≤ 5,

x1, x2 ≥ 0.

a) State the KKT-conditions for the problem and verify that they are necessary.(1p)

b) Find all KKT-points, both graphically and analytically. What is the global op-(2p)
timum?
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Question 7(3p)

(Farkas’ lemma)

Farkas’ Lemma can be states as follows:

Let A be any m×n matrix and b an m×1 vector. Then exactly one of the two systems

Ax = b,

x ≥ 0n,

and

ATy ≤ 0m,

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.


