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Question 1

(Simplex method)

Consider the problem to

minimize f(x) := −4x1 + x2,

subject to x1 − x2 ≤ 2,

−x1 +2x2 ≤ 1,

x1, x2 ≥ 0.

a) Formulate the problem on the standard form for linear optimization problems.(0.5p)

b) Solve the problem using the simplex method. Present an optimal solution in the(1.5p)
original variables.

c) Consider modifying the problem by including the variable x3 as follows(1p)

minimize f(x) := −4x1 + x2 + x3,

subject to x1 − x2 + x3 ≤ 2,

−x1 +2x2 − 3x3 ≤ 1,

x1, x2, x3 ≥ 0.

Solve the problem using the simplex method using the optimal basis from b)
as initial basis. Present an optimal solution or a ray of unboundedness in the
original variables

Question 2(3p)

(Farkas Lemma)

Let B,C ∈ R
m×n be matrices and v ∈ R

m a vector. Assume that there exists a vector
z ≤ 0n such that

Bz = Cz + v.

Show that there cannot exist a vector y ∈ R
m such v

T
y > 0 and CT

y ≤ BT
y.
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Question 3

(KKT conditions)

Consider the following optimization problem, where c is a nonzero vector in R
n:

max c
T
x,

s.t. xT
x ≤ 1.

a) Show that x̄ = c/||c|| is a KKT point.(1p)

b) Show that x̄ is the unique global optimal solution.(2p)

Question 4(3p)

(Gradient projection)

The gradient projection algorithm is a generalization of the steepest descent method
to constrained optimization problems over convex sets. Given a feasible point x

k,
the next point is obtained according to x

k+1 = ProjX
(

x
k − αk∇f(x)

)

, where X is
the convex set over which we minimize, αk > 0 is the step length, and ProjX(y) =
argminx∈X ||x− y||.

Consider the problem to

minimize f(x) = x2

1 + 2x2

2 − 2x1x2 − 2x1 − 3x2 + 8,

subject to x ∈ X,

where X is the rectangle X = {x ∈ R
2 | 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 2}

Start at the point x0 = (0, 0)T and perform two iterations of the gradient projection
algorithm using step lengths αk = 1 for all k. You may solve the projection problem
in the algorithm graphically. Is the point obtained a global/local minimum? Motivate
why/why not.
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Question 5(3p)

(Modelling)

Figure 1: A Sudoku.

Consider a Sudoku, i.e., a 3× 3 matrix of cells where each
cell is a 3 × 3 matrix of tiles; the Sudoku thus forms a
9× 9 matrix of tiles. Each tile is to be assigned a number
from one to nine such that the number is unique in the
row, column, and cell containing the tile. The numbers of
some tiles are given; an example of a Sudoku is illustrated
in Figure 1.

a) Create a binary linear model of the feasible assign-(1.5p)
ments of a Sudoku. Let xijk denote the binary deci-
sion choice of assigning number k to row i and column
j, where i, j, k ∈ {1, . . . , 9}. Let (i, j, k) ∈ A denote
the set of initially given numbers, i.e., xijk = 1 for all
(i, j, k) ∈ A.

hint: Introduce the sets Cl containing the tiles (i, j)
in cell l, l = 1, . . . , 9.

b) Assume that the Sudoku has a feasible solution x̄.(1.5p)
Add a linear objective function to your model in a)
such that x̄ is an optimal solution if and only if it
is the only feasible solution. Show that any other
feasible solution x̃ 6= x̄ has a better objective value.

Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate
your answers!

a) Let S be a nonempty, closed and convex set in R
n, and let f : Rn 7→ R be defined(1p)

as f(y) = minx∈S ||y − x||.

Claim: The function f is convex.

b) Claim: If the KKT conditions are sufficient, then they are also necessary.(1p)

c) Claim: For the phase I (when a BFS is not known a priori) problem of the simplex(1p)
algorithm, the optimal value is always zero.



EXAM
TMA947/MMG621 — NONLINEAR OPTIMISATION 4

Question 7(3p)

(Lagrangian relaxation and decomposition)

Consider the problem to

minimize z, (1)

subject to
∑

j∈J

pijxij ≤ z, i ∈ I, (2)

∑

i∈I

xij = 1, i ∈ J , (3)

xij ∈ {0, 1}, j ∈ I, j ∈ J , (4)

z ∈ R. (5)

Here I denotes a set of machines and J denotes a set of tasks, xij denotes the decision
to perform task j by machine i, and pij denotes the corresponding processing time. The
variable z denotes the makespan, i.e., the time at which the last machine is finished.

a) Lagrangian relax constraints (2) with multipliers ui, i ∈ I. Let h(u) denote the(1p)
value of the dual function and show that h(u) = −∞ if

∑

i∈I ui 6= 1.

b) Assume that
∑

i∈I ūi = 1 and show that evaluating h(ū) reduces to solving(1.5p)
J separate optimization problems. State the optimal solution to each of these
Lagrangian subproblems and the resulting formula for h(ū).

c) Show that the Lagrangian subproblem solution forms a primal feasible solution(0.5p)
for some value of z.
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Note: the solutions presented here are brief in relation to the requirements on your
answers, in particular regarding your motivations.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 1

Question 1

(Simplex method)

a) The problem on standard form is:(0.5p)

minimize f(x) := −4x1 + x2,

subject to x1 − x2 + s1 = 2,

−x1 +2x2 + s2 = 1,

x1, x2, s1, s2 ≥ 0.

b) We can start directly in phase two since the slack variables provides an initial(1.5p)
feasible basis.

First iteration: we have xB = (s1, s2), xN = (x1, x2), B =

[

1 0
0 1

]

,

N =

[

1 −1
−1 2

]

, cB =

[

0
0

]

, cTN =
[

−4 1
]

, B−1b =

[

2
1

]

.

Checking optimality:

c̄TN = cTN − cTBB
−1N =

[

−4 1
]

−
[

0 0
]

[

1 −1
−1 2

]

=
[

−4 1
]

Not optimal, minimum reduce costs indicate x1 enter the basis.

Minimum ratio test: B−1N1 =

[

1
−1

]

argmin
i∈(B−1N1)i>0

(B−1b)i
(B−1N1)i

= argmin{
2

1
,−}

hence, s1 leaves the basis.

Second iteration: we have xB = (x1, s2), xN = (x2, s1), B =

[

1 0
−1 1

]

, B−1 =
[

1 0
1 1

]

, N =

[

−1 1
2 0

]

, cB =

[

−4
0

]

, cTN =
[

1 0
]

, B−1b =

[

2
3

]

.

Checking optimality:

c̄TN = cTN − cTBB
−1N =

[

1 0
]

+
[

4 0
]

[

−1 1
2 0

]

=
[

−3 4
]

Not optimal, minimum reduce costs indicate x2 enter the basis.

Minimum ratio test: B−1N1 =

[

−1
1

]

argmin
i∈(B−1N1)i>0

(B−1b)i
(B−1N1)i

= argmin{−,
3

1
}

hence, s2 leaves the basis.
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Third iteration: we have xB = (x1, x2), xN = (s1, s2), B =

[

1 −1
−1 2

]

, B−1 =
[

2 1
1 1

]

, N =

[

1 0
0 1

]

, cB =

[

−4
1

]

, cTN =
[

0 0
]

, B−1b =

[

5
3

]

.

Checking optimality:

c̄TN = cTN − cTBB
−1N =

[

0 0
]

+
[

7 3
]

[

1 0
0 1

]

=
[

7 3
]

≥ 0

The solution in the original variables are x1 = 5, x2 = 3.

c) Continuing the third iteration, we have a new non-basic variable x3.(1p)

xN = (x3, s1, s2), N =

[

1 1 0
−3 0 1

]

, cTN =
[

1 0 0
]

.

Checking optimality:

c̄TN = cTN − cTBB
−1N =

[

1 0 0
]

+
[

7 3
]

[

1 1 0
−3 0 1

]

=
[

−1 7 3
]

Not optimal, minimum reduce costs indicate x3 enter the basis.

Minimum ratio test: B−1N1 =

[

−1
−2

]

≤ 0, hence the problem is unbounded.

The ray of unboundedness in the original variables is x1 = 5+ t, x2 = 3+2t, x3 =
t, t ≥ 0.

Question 2

(Farkas Lemma)

We have that there exists a vector z ≤ 0 such that Bz − Cz = v. Which means that
for x = −z it holds that

(C − B)x = v,

x ≥ 0.

Using Farkas lemma we then know that there can not exist any u ∈ R
m such that

(C − B)Tu ≥ 0,

v
T
u < 0.

So there can not exist any y ∈ R
m with CT

y ≤ BT
y and v

T
y > 0.
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Question 3(3p)

(KKT conditions)

a) Set f(x) = −ctx, g(x) = x
t
x− 1. The KKT conditions are(1p)

∇f(x) + µ∇g(x) = −c+ 2µx,

µg(x) = 0,

µ ≥ 0.

When x̄ = c/||c||, µ = ||c||/2, all the conditions are fulfilled. So x̄ is a KKT
point.

b) Since the objective function and the feasible set are both convex, the problem(2p)
is convex. Thus KKT conditions are sufficient. Since the feasible set is convex
and 0 is an interior point, Slater CQ holds. Thus KKT conditions are necessary.
To solve the KKT system, suppose x̃ is a KKT point. If g(x̃) < 0, then µ = 0,
but ∇f(x) = c 6= 0, contradiction. Thus g(x̃) = 0, µ > 0. x̃ = c/2µ, plug it
into g(x̃) = 0, we get x̃ = c/||c||. So, x̄ is an unique KKT point. Since KKT
conditions are both necessary and sufficient, x̄ is an unique global optimal.

Question 4(3p)

(Gradient projection)

Iteration 1: We have ∇f(x0) = (−2,−3)T . We need to project the point (0, 0)T −
(−2,−3)T = (2, 3)T on the feasible region X. We graphically see that this projection
is obtained by taking the point (2, 2). Hence, x1 = (2, 2)T .

Iteration 2: We have ∇f(x1) = (−2, 1)T . We need to project the point (2, 2)T −
(−2, 1)T = (4, 1)T on the feasible region X. We graphically see that this projection is
obtained by taking the point (3, 1). Hence, x2 = (3, 1)T .

The obtained point is neither a global nor a local minimum. This can be checked by,
e.g., the KKT conditions and realizing that the point is not a stationary point.
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Question 5(3p)

(modeling)

a) Definitions of additional sets(1.5p)

• I := {1, . . . , 9} be the index set of rows.

• J := {1, . . . , 9} be the index set of columns.

• L := {1, . . . , 9} be the index set of cells.

• K := {1, . . . , 9} be the index set of numbers.

The set of feasible solution S to the Sudoku is defined by:

∑

i∈I

xijk = 1, j ∈ J, k ∈ K,

∑

j∈J

xijk = 1, i ∈ I, k ∈ K,

∑

(i,j)∈Cl

xijk = 1, l ∈ L, k ∈ K,

∑

k∈K

xijk = 1, i ∈ I, j ∈ J,

xijk = 1, (i, j, k) ∈ A,

xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K.

b) Consider the objective function, to be minimized(1.5p)

f(x) :=
∑

i∈I

∑

j∈J

∑

k∈K

x̄ijkxijk.

Let x̃ ∈ S and assume that x̃ 6= x̄. Let k̄ij be the number assigned to tile (i, j)
in solution x̄. Note that there exists by assumption at least one tile (i, j) such
that x̃ijk̄ij

= 0. We yield that

f(x̃) =
∑

i∈I

∑

j∈J

x̃ijk̄ij
<
∑

i∈I

∑

j∈J

1 =
∑

i∈I

∑

j∈J

x̄ijk̄ij
x̄ijk̄ij

= f(x̄).

Thus, x̄ is not an optimal solution.

Question 6

(true or false)

a) True. By Weierstrass theorem, f(y) = minx∈S ||y−x|| has an optimal solution.(1p)
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Suppose the optimal solution for f(y1) is x1. For f(y2) the optimal solution is
x
2.

λf(y1) + (1− λ)f(y2)

=λmin
x∈S

{||y1 − x||}+ (1− λ)min
x∈S

{||y2 − x||}

=λ||y1 − x
1||+ (1− λ)||y2 − x

2||

(by triangle-inequality )

≥||λ(y1 − x
1) + (1− λ)(y2 − x

2)||

=||λy1 + (1− λ)y2 − (λx1 + (1− λ)x2)||

since S is convex, x1 and x
2 belong to S, λx1 + (1− λ)x2 also belong to S

≥min
x∈S

{||[λy1 + (1− λ)y2]− x||}

=f(λy1 + (1− λ)y2)

Thus, the function f is convex.

b) False. Suppose the feasible set is x2
1 + x2 ≤ 0, x2

1 − x2 ≤ 0, and the objective(1p)
function (to be minimized) is f = x1. Since the only feasible point is (0, 0)T ,
and the objective function is convex, the problem is convex. Thus, the KKT
conditions are sufficient. But at point (0, 0)T , the gradient cone is (a, 0)T where
a ∈ R, and the tangent cone is (0, 0)T , so they are not the same. Thus, the KKT
conditions are not necessary.

c) False. If no feasible solution exists, the optimal value is > 0. If feasible solutions(1p)
exist, the optimal value is = 0.

Question 7(3p)

(Lagrangian relaxation and decomposition)

a) The Lagrangian dual function is(1p)

h(u) = inf

{(

1−
∑

i∈I

ui

)

z +
∑

i∈I

ui

∑

j∈J

pijxij

∣

∣

∣

∣

∑

i∈I

xij = 1, j ∈ J, xij ∈ B, z ∈ R

}

Since there are no constraints on z we yield that h(u) = −∞ unless the coefficient
1−

∑

i∈I ui is zero, i.e.,
∑

i∈I ui = 1.

b) Note that there is no constraint that connects variables from different tasks and(1.5p)
the objective is linear. By also assuming

∑

i∈I ūi = 1 we yield

h(ū) =
∑

j∈J

min

{

∑

i∈I

ūipijxij

∣

∣

∣

∣

∑

i∈I

xij = 1, xij ∈ B, i ∈ I

}

The constraints can be read as choose one machine for each task, hence choosing
a machine with (tied) smallest objective coefficient is optimal. Hence, let i∗j ∈
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argmini∈I ūipij, j ∈ J . The minimizer of the Lagrangian function at ū is thus
x̄i∗j j

= 1 for j ∈ J and otherwise zero. We yield

h(ū) =
∑

j∈J

min
i∈I

ūipij

c) All relaxed constraints are satisfied by choosing z̄ = argmaxi∈I
∑

j∈J pijx̄ij, hence(0.5p)
(x̄, z̄) forms a primal feasible solution.


