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Question 1

(Simplex method)

Consider the problem to

minimize f(x) := |x1|+ |x2|,
subject to x1− 2x2 ≥ 1,

−x1− x2 ≤ 5.

a) Rewrite the problem to standard form, by using the transformation |xi| = x+i +x−i(1p)
where xi = x+i − x−i and x+i , x

−
i ≥ 0, which is to be motivated in c). Then verify

that using x−1 and x−2 as basic variables results in a basic feasible solution (BFS).

b) Solve the problem using the second phase of the simplex method. Use the BFS(1.5p)
suggested in a) as the initial basis. Present the optimal solution in terms of the
original variables.

c) Motivate the transformation made in a) by proving that the equality |xi| =(0.5p)
x+i + x−i , i = 1, 2, holds in any BFS.

Question 2(3p)

(unconstrained optimization)

Consider the unconstrained problem to minimize the function

f(x1, x2) = x21 + x1x2 − x22 + 2x1

a) Start in x0 = (0, 0)T and perform two iterations with the steepest descent method(1p)
using the step length αk = 1 in each iteration. Is the point reached an optimal
solution?

b) Start in x0 = (0, 0)T and perform two iterations with the Newton method using(2p)
the Levenberg-Marquardt modification with γ = 3. Use step length αk = 1 in
each iteration. Is the point reached an optimal solution?
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Question 3(3p)

Let φ : X × Y 7→ R be a continuous function, where X ⊆ Rn and Y ⊆ Rm are
non-empty sets.

a) Show that the following inequality holds(1p)

sup
y∈Y

inf
x∈X

φ(x,y) ≤ inf
x∈X

sup
y∈Y

φ(x,y).

b) Suppose that X and Y are nonempty, compact, and convex sets, and that the(2p)
function φ is convex in x for any given y and concave in y for any given x.

Show that the function ρ : X 7→ R, defined by ρ(x) := maxy∈Y φ(x,y), is a convex
function in x and that the function δ : Y 7→ R, defined by δ(y) := minx∈X φ(x,y),
is a concave function in y.

Question 4(3p)

(KKT conditions)

Consider the problem to

minimize f(x) := −x1 + x2,

subject to x21 + x2 ≤ 43,

(x1 − 1)3 − x2 ≤ 0,

x1 ≥ 2.

a) State the KKT-conditions for the problem and check whether they are necessary(2p)
or not, and whether they are sufficient or not.

b) Find all KKT-points. For each of the KKT points, state whether it is optimal.(1p)
Motivate!
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Question 5(3p)

(Modelling)

Consider a network flow problem on a set of nodes N and a set of edges E ⊂ N ×N .
Some nodes are source nodes S ⊂ N in which a fluid enters the system. This fluid
contains some pollutant. Let p̄i denote the known portion of the pollutant in the fluid
leaving node i ∈ S. Fluid can be purchased in the source nodes i ∈ S at a cost of ci
SEK per unit of fluid. Then there are some intermediate nodes I ⊂ N \ S that are
pools in which the incoming fluids are mixed to a homogeneous state. Finally, there
are some terminal nodes T = N \ (I ∪ S), which has a quantity demand di ≥ 0 of
fluid to be delivered and quality requirement represented by an upper bound p̄i on the
allowed portion of the pollutant. You can assume that the source nodes S can not have
incoming flow from other nodes and that the terminal nodes T can not have outgoing
flow to other nodes.

Construct a non-linear model minimizing the total purchase cost while satisfying the
demand and the desired quality in all terminal nodes.

Hints: To model this you need two sets of variables: (i) let fij the denote the amount
of fluid sent from a node i ∈ N to a node j ∈ N and (ii) let pi denote the portion of
the pollutant in the flow leaving node i ∈ N . The amount of the pollutant in the flow
from a node i to a node j can thus be computed by the expression fijpi.

All intermediate nodes have equal amounts of total incoming and outgoing fluid. And
similarly, the total amount (not portion) of the pollutant entering and leaving these
nodes must also be equal.
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Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate
your answers!

a) Consider a primal-dual pair of linear programs.(1p)

Claim: If the dual problem is infeasible then the primal problem is unbounded.

b) Consider the problem to minx∈Rn f(x) where f : Rn 7→ R is a twice differentiable(1p)
function (i.e., f ∈ C2).

Claim: If ∇f(x∗) = 0 and ∇2f(x∗) � 0 then x∗ is a local minimum of f .

c) Consider the Frank-Wolfe method used for minimizing a non-linear function over(1p)
a polyhedron.

Claim: In each iteration of the algorithm a linear program needs to be solved in
order to find the search direction.

Question 7(3p)

(Lagrangian duality)

Consider the problem (P) to

minimize x21 + 2x22,

subject to x1 + x2 ≥ 2,

x1, x2 ≤ 2.

Lagrangian relax the constraint x1 + x2 ≥ 2. State and evaluate the Lagrangian dual
function q at µ = 0 and µ = 6 and provide the corresponding lower bounds on the
optimal objective value to the problem (P).
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Question 1

(Simplex method)

a) The problem on standard form is:(1p)

minimize x+1 + x−1 + x+2 + x−2 (1)

subject to x+1 −x−1 −2x+2 +2x−2 −s1 = 1, (2)

−x+1 + x−1 − x+2 + x−2 + s2= 5, (3)

x+1 , x
−
1 , x+2 , x−2 , s1, s2 ≥ 0 (4)

Using xB = (x−1 , x
−
2 ), we get

xB = B−1b =

[
−1 2
1 1

]−1 [
1
5

]
=

1

3

[
−1 2
1 1

] [
1
5

]
=

[
3
2

]
≥ 0

hence xB is a BFS.

b) First iteration: we have xB = (x−1 , x
−
2 ), xN = (x+1 , x

+
2 , s1, s2), B =

[
−1 2
1 1

]
, B−1 =(1.5p)

1
3

[
−1 2
1 1

]
, N =

[
1 −2 −1 0
−1 −1 0 1

]
, cB =

[
1
1

]
, cTN =

[
1 1 0 0

]
, B−1b =

[
3
2

]
.

Checking optimality:

c̄TN = cTN − cTBB−1N =
[
1 1 0 0

]
−
[
0 1

] [ 1 −2 −1 0
−1 −1 0 1

]
=
[
2 2 0 −1

]
Not optimal, minimum reduce costs indicate s2 enter the basis.

Minimum ratio test:

argmin
i∈(B−1N4)i>0

(B−1b)i
(B−1N4)i

= argmin{ 3

2/3
,

2

1/3
} = argmin{9

2
, 6}

hence, x−1 leaves the basis.

Second iteration: we have xB = (x−2 , s2), xN = (x+1 , x
−
1 , x

+
2 , s1), B =

[
2 0
1 1

]
, B−1 =

1
2

[
1 0
−1 2

]
, N =

[
1 −1 −2 −1
−1 1 −1 0

]
, cB =

[
1
0

]
, cTN =

[
1 1 1 0

]
, B−1b =

1
2

[
1
9

]
.

Checking optimality:

c̄TN = cTN−cTBB−1N =
[
1 1 1 0

]
−
[
1
2

0
] [ 1 −1 −2 −1
−1 1 −1 0

]
=
[
1
2

3
2

2 1
2

]
≥ 0

The current basis is optimal.

The solution in the original variables are x1 = 0, x2 = −1
2
.
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c) Note that the columns of x+1 , x
−
1 are linearly dependent, hence, by definition of(0.5p)

basis they both cannot be non-zero in a BFS. Thus in every BFS one of them is
non-zero and the equality hold.

Question 2

(unconstrained optimization)

We have that

∇f(x) = (2x1 + x2 + 2, x1 − 2x2), ∇2f(x) =

(
2 1
1 −2

)
, ∇2f(x) + γI =

(
5 1
1 1

)

a) At x0 = (0, 0) the search direction is −∇f(x0) = (−2, 0). So x1 = (−2, 0).(1.5p)

At x1 = (−2, 0) the search direction is −∇f(x1) = (2, 2). So x2 = (0, 2).

x2 = (0, 2) is not an optimal solution since ∇f(x2) 6= 0

b) At x0 = (0, 0) the search direction is −(∇2f(x0) + γI)−1∇f(x0) = (−1/2, 1/2).(1.5p)
So x1 = (−1/2, 1/2).

At x1 = (−1/2, 1/2) the search direction is−(∇2f(x1)+γI)−1∇f(x1) = (3/2,−9/4).
So x2 = (1/4,−7/4).

x2 = (1/4,−7/4) is not an optimal solution since ∇f(x2) 6= 0

Question 3

a) Define f(y) = infx∈X φ(x,y), then it holds that f(y) = infx∈X φ(x,y) ≤ φ(x,y).(1p)
Therefore, supy∈Y f(y) ≤ supy∈Y φ(x,y) for any x.

So, supy∈Y f(y) ≤ infx∈X supy∈Y φ(x,y). Which means:

sup
y∈Y

inf
x∈X

φ(x,y) ≤ inf
x∈X

sup
y∈Y

φ(x,y)

b)(2p)

ρ((1− α)x1 + αx2)

= max
y∈Y

φ((1− α)x1 + αx2,y)

=(suppose the optimal y for this optimization problem is y1)

=φ((1− α)x1 + αx2,y1)

=(the function φ is convex in x for any given y)

≤(1− α)φ(x1,y1) + αφ(x2,y1)

≤(1− α) max
y∈Y

φ(x1,y) + αmax
y∈Y

φ(x2,y)

=(1− α)ρ(x1) + αρ(x2)
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By definition of convexity ρ(x) is convex.

To show the function minx∈X φ(x,y) is a concave function in y is the same as
shown −minx∈X φ(x,y) is a convex function in y, which is the same as shown
maxx∈X−φ(x,y) is a convex function in y. We know the function φ is concave
in y for any given x, so the function −φ is convex in y for any given x. Then
the rest of the prove is as before.
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Question 4(3p)

(KKT conditions)

a) The KKT conditions are(2p)

∇f(x)+
3∑
i=1

µi∇gi(x) =

(
−1
1

)
+µ1

(
2x1
1

)
+µ2

(
3(x1 − 1)2

−1

)
+µ3

(
−1
0

)
=

(
0
0

)
,

µigi(x) = 0, i = 1, 2, 3

µi ≥ 0. i = 1, 2, 3

For necessity we check LICQ. For interior points, since there is no active con-
straints, so the gradients of the active constraints are linearly independent. For
the points on the boundary, but not extreme points, since there is only one
active constraint, so the gradients of the active constraints are linearly indepen-
dent. Now we check the extreme points. There are three extreme points: (2, 1)T ,
(2, 39)T , (4, 27)T .

For the point (2, 1)T , the gradients of the active constraints are (3,−1)T and
(−1, 0). They are linearly independent.

For the point (2, 39)T , the gradients of the active constraints are (2, 1)T and
(−1, 0). They are linearly independent.

For the point (4, 27)T , the gradients of the active constraints are (8, 1)T and
(27,−1). They are linearly independent.

So, LICQ holds at all feasible points, which means KKT conditions are necessary.

For sufficiency, the objective function is obviously convex. f = x21 +x2 is convex,
by level set theorem, set {x21 + x2 ≤ 43} is convex. The eigenvalues of hessian of
f̄ = (x1− 1)3−x2 are 6(x1− 1) and 0. So when x1 ≥ 2, the function f̄ is convex.
So the set {(x1−1)3−x2 ≤ 0, x1 ≥ 2} is convex. The intersection of convex sets
are convex, so the feasible set is convex. Thus, the problem is convex. Which
means KKT conditions are sufficient.

b) Look at the first KKT condition, we can see µ2 must be positive. If g2 is the only(1p)
active constraint, then x1 < 2, which is not feasible. If g1 and g2 are active, it
corresponds to the point (4, 27)T .(

−1
1

)
+ µ1

(
8
1

)
+ µ2

(
27
−1

)
=

(
0
0

)
,

Solve this we get µ1 = −26
35

, µ2 = 9
35

. Since µ1 < 0, so it is not a KKT point.

If g2 and g3 are active, it corresponds to the point (2, 1)T .(
−1
1

)
+ µ2

(
3
−1

)
+ µ3

(
−1
0

)
=

(
0
0

)
,

Solve this we get µ2 = 1, µ3 = 2. So it is a KKT point.

Since the KKT conditions are sufficient for optimality, so (2, 1)T is the optimal
point and the optimal value is −1.
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Question 5(3p)

(modeling)

Additional sets:

• A set of arcs with no incoming arcs to the source nodes and no outgoing from
the terminal nodes.

• δ+(i) be the set of nodes j ∈ N such that (i, j) ∈ A.

• δ−(i) be the set of nodes j ∈ N such that (j, i) ∈ A.

Variables:

• fij denote the units of flow sent from node i ∈ N to node j ∈ N , where (i, j) ∈ A.

• pi denote the portion of the pollutant in the flow leaving node i ∈ N .

Additional parameters:

• p̄i be the known level of the pollutant leaving the source nodes i ∈ S.

minimize
∑
i∈S

ci
∑

j∈δ+(i)

fij (1)

subject to
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji = 0, i ∈ I, (2)

∑
j∈δ−(i)

fji ≥ di, i ∈ T, (3)

∑
j∈δ−(i)

pjfji − pi
∑

j∈δ−(i)

fji = 0, i ∈ I ∪ T, (4)

pi = p̄i, i ∈ S, (5)

pi ≤ p̄i, i ∈ T, (6)

fij ≥ 0, (i, j) ∈ A. (7)

(2) and (3) are the flow balance equations for the fluid, (4) is the flow balance equations
for the pollutants, and (5), (6), (7) are the constraints on the pollutants and on the
flow.
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Question 6

(true or false)

a) False. The primal problem might also be infeasible.(1p)

b) False. Counter-example is f(x) = x3 and the point x∗ = 0.(1p)

c) True. In order to find the search direction one needs to solve the problem(1p)
minx∈P ∇f(xk)T(x−xk) where P is the polyhedron and xk is the current iterate.
And this is a linear program.

Question 7(3p)

(Lagrangian duality)

The Lagrangian dual function is

q(µ) = min
x1,x2≤2

x21 + 2x22 + µ(2− x1 − x2)

= 2µ+ min
x1≤2

(
x21 − µx1

)
+ min

x2≤2

(
2x22 − µx2

)
.

At µ = 0 the two inner optimization problems have solutions x1 = 0 and x2 = 0. So
q(0) = 0.

At µ = 6 the two inner optimization problems have solutions x1 = 2 and x2 = 1.5 so
q(6) = −0.5


