Chalmers/GU Mathematics sciences \mathbf{EXAM}

TMA947/MMG621 NONLINEAR OPTIMISATION

Date:	20-08-18				
Time:	$8^{30} - 13^{30}$				
Aids:	All aids are allowed, but cooperation is not allowed				
Number of questions:	7; passed on one question requires 2 points of 3.				
	Questions are <i>not</i> numbered by difficulty.				
	To pass requires 10 points and three passed questions.				
Examiner:	Ann-Brith Strömberg				
Note:	It is not possible to "plus" (retaking an exam in a course you have already passed, to raise its grade). Students who have not yet passed the exam can attend this re-exam.				

When	you	answer	the	questions

Use generally valid theory and methods. State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen. Do not answer more than one question per page.

(Simplex method) Consider the problem

maximize
$$x_1 - x_2$$

subject to $2x_1 + x_2 \ge 2$
 $x_1 - x_2 \le 2$
 $x_1, \quad x_2 \ge 0$

- (0.5p) a) Convert the problem to standard form.
- (1.5p) b) Solve the problem using Phase I and Phase II of the simplex method. Use you calculations to provide an optimal solution or a unbounded ray in the original variables.
- (1p) c) Derive the set of optimal solutions by analysing the reduced costs of the final iteration and conducting another minimum ratio test.

Question 2

(Representation theorem)

Consider the problem to minimize $\boldsymbol{x} \in P f(\boldsymbol{x})$, where P is a non-empty polyhedron.

- (2p) a) Assume that f is a concave function and that the problem has an optimal solution.Does the set of optimal solutions contain an extreme point of P? Prove or provide a counter example.
- (1p) b) Assume that f is a convex function. Does the set of optimal solutions always contain an extreme point of P? Prove or provide a counter example.

(3p) Question 3

(Convexity)

Let $f_1, f_2, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions. Consider the function f defined by $f(\boldsymbol{x}) = \max\{f_1(\boldsymbol{x}), f_2(\boldsymbol{x}), \ldots, f_k(\boldsymbol{x})\}.$

- (2p) a) Show that f is convex.
- (1p) b) State and prove a similar result for concave functions.

(3p) Question 4

(Linear programming)

Consider the problem to

minimize
$$c^{\mathrm{T}}x$$
,
subject to $Ax = b$, (1)
 $x \ge 0$

and the perturbed version of the problem where the right-hand-side is changed from \boldsymbol{b} to $\boldsymbol{b} + \delta \boldsymbol{b}$. Show that if the original problem (1) has an optimal solution then the perturbed version cannot be unbounded, independently of $\delta \boldsymbol{b}$.

(3p) Question 5

(Modelling)

A rocket launching problem. Suppose that we are to send a rocket to the altitude of \bar{z} [m] in time T [s]. Let z(t) [m] denote its height above the ground at time t and f(t) [N] be the non-negative upward force of the rocket thrusters at time t. Let the mass of the rocket be m [kg], the maximal thrust of the rocket be b [N], an let v(t) = z'(t) [m/s] denote the upward velocity.

Formulate an optimization problem, with a quadratic objective function and affine constraints, that minimizes the energy required for the rocket to reach the desired altitude at time T.

Hints: The amount of energy required can be computed by

$$\int_0^T f(t)v(t)\,dt,$$

and the equation of motion is

$$mv'(t) + mg = f(t), \quad t \in [0, T].$$

Assume that the time interval is divided into K periods of length l := T/K and let $f_k := f(lk), z_k := z(lk), v_k := v(lk), k = 1, ..., K$. Then approximate the velocity and acceleration using finite differences, e.g., $v_k = (z_k - z_{k-1})/l$, k = 1, ..., K. Similarly, approximate the integral as a Riemann sum.

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate your answers!

- (1p) a) Claim: The Simplex method is a suitable solution method for problems where a convex objective function should be optimized over a polytope.
- (1p) b) Claim: For a convex optimization problem, every KKT-point is a global optimal solution.

(1p) c) Consider a convex function $f : \mathbb{R}^n \to \mathbb{R}$. *Claim:* If f is differentiable at a point $\bar{x} \in \mathbb{R}^n$, then the identity $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$ holds.

(3p) Question 7

(Exterior penalty method)

Consider the following problem:

minimize
$$f(\boldsymbol{x}) := 2e^{x_1} + 3x_1^2 + 2x_1x_2 + 4x_2^2$$
,
subject to $3x_1 + 2x_2 - 6 = 0$.

Formulate a suitable exterior penalty function with the penalty parameter $\nu = 10$. Starting at the point (1, 1), perform one iteration of a gradient method to solve the unconstrained penalty problem.

EXAM SOLUTION

TMA947/MMG621 NONLINEAR OPTIMISATION

Date:20–08–18Examiner:Ann-Brith Strömberg

Note: the solutions presented here are brief in relation to the requirements on your answers, in particular regarding your motivations.

(Simplex method)

(0.5p) a) The problem on standard form is:

minimize
$$-x_1 + x_2$$

subject to $2x_1 + x_2 - s_1 = 2$
 $x_1 - x_2 + s_2 = 2$
 $x_1, x_2, s_1, s_2 \ge 0$

(1.5p) b) Utilizing that s_2 can be for the initial BFS, the phase I problem is

minimize
$$+a_1$$

subject to $2x_1 + x_2 - s_1 + a_1 = 2$
 $x_1 - x_2 + s_2 = 2$
 $x_1, x_2, s_1, s_2, a_1 \ge 0$

Our basic variables are (a_1, s_2) and our non-basic are (x_1, x_2, s_1) , we get

$$B = B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, N = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}, c_B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, c_N = \mathbf{0}, x_B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

The reduced costs for the non-basic variables are

$$\bar{c}_N^T = c_N^T - \bar{c}_B^T B^{-1} N = -\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 1 \end{bmatrix},$$

by the minimum reduced cost rule, x_1 enter the basis. We have that $B^{-1}N_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$, the minimum ratio test is thus

$$\underset{i|(B^{-1}N_1)_i>0}{\operatorname{argmin}} \frac{(x_B)_i}{(B^{-1}N_1)_i} = \underset{i|(B^{-1}N_1)_i>0}{\operatorname{argmin}} \begin{bmatrix} \frac{2}{2} & \frac{2}{1} \end{bmatrix}$$

And thus a_1 leaves the basis and Phase I is complete. Our basic variables are (x_1, x_2) and our non-basic are (x_2, x_3) we get

Our basic variables are
$$(x_1, s_2)$$
 and our non-basic are (x_2, s_1) , we get

$$B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{bmatrix}, N = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}, c_B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, c_N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

The reduced costs for the non-basic variables are

$$\bar{c}_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix} - \underbrace{\begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{bmatrix}}_{=\begin{bmatrix} -\frac{1}{2} & 0 \end{bmatrix}} \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \end{bmatrix},$$

by the minimum reduced cost rule, s_1 enter the basis. We have that $B^{-1}N_2 = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, the only positive denominator in the minimum ratio test corresponds to s_2 , which leaves the basis.

Our basic variables are (x_1, s_1) and our non-basic are (x_2, s_2) , we get

$$B = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, N = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, c_B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, c_N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

The reduced costs for the non-basic variables are

$$\bar{c}_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix} - \underbrace{\begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}}_{=\begin{bmatrix} 0 & -1 \end{bmatrix}} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \ge 0,$$

since the reduced costs are all non-negative, we conclude that the current basis is optimal, and the values of the original variables are $\boldsymbol{x} = (2, 0)$.

(1p) c) Since the reduced costs of s_2 is strictly positive we deduce that $s_2^* = 0$. We let x_2 enter the basis and do the minimum ratio test. Note that $B^{-1}N_1 = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$ imply that the entire ray

$$x_B = B^{-1}b - \gamma B^{-1}N_1, x_2 = \gamma, s_2 = 0, \gamma \ge 0,$$

is feasible. Since the reduced costs of x_2 is zero we yield that the ray is a set of optimal solutions. Returning to the original variables we get that $\boldsymbol{x} = (2 + \gamma, \gamma)$ is an optimal solution for each $\gamma \geq 0$. Noting that this is precisely the set for which $s_2 = 0$ and thus it equals the set of optimal solutions.

Question 2

(Representation theorem)

(2p) a) Let $x_i, i \in I$ be the extreme points and $d_j, j \in J$ be the extreme directions of P, respectively. Then we have by the representation theorem that

$$P = \left\{ \sum_{i \in I} \lambda_i x_i + \sum_{j \in J} \mu_j d_j \, \left| \sum_{i \in I} \lambda_i = 1, \boldsymbol{\lambda}, \boldsymbol{\mu} \ge 0 \right\}.$$

Now, consider the optimal solution $x^* \in P$ that exists by assumption, i.e., $f(x^*) \leq f(x), x \in P$.

First we will show that $\mu^* = 0$ or that such a choice exists. Let $j \in J$ be such that $\mu_j^* > 0$ and consider the line segment between $\mu_j^1 = 0, \mu_j^2 = 2\mu_j^*$, and let x^1, x^2 be the corresponding points, by the concavity of f we have that $f(x^1)/2 + f(x^2)/2 \leq f(x^*)$. Hence, by the optimality of x^* we yield that $f(x^1) = f(x^2) = f(x^*)$, showing that $\mu_j = 0$ is also a optimal choice.

Similarly assume that x^* is an optimal solution but not an extreme point. By the concavity of f we have that

$$f(x^*) = f(\sum_{j \in I} \lambda_i x_i) \ge \sum_{j \in I} \lambda_i f(x_i)$$

However, since $f(x_i) \ge f(x^*)$, we get that $\lambda_i = 0$ if $f(x_i) > f(x^*)$ and for $\lambda_i > 0$, $f(x^i) = f(x^*)$. Thus, x^* is a convex combination of optimal extreme points.

(1p) b) Consider the counter-example, $f(x) = x^2$, P = [-1, 1], the extreme-points are clearly non-optimal.

(3p) Question 3

(Convexity)

(1.5p) a) Consider $\bar{x} = \lambda x^1 + (1 - \lambda)x^2$.

$$f(\bar{x}) = \max\{f_1(\bar{x}), f_2(\bar{x}), \dots, f_k(\bar{x})\}$$

since $f_i(x)$ convex
$$\leq \max\{\lambda f_1(x^1) + (1-\lambda)f_1(x^2), \dots, \lambda f_k(x^1) + (1-\lambda)f_k(x^2)\}$$

$$\leq \lambda \max\{f_1(x^1), \dots, f_k(x^1)\} + (1-\lambda)\max\{f_1(x^2), \dots, f_k(x^2)\}$$

$$= \lambda f(x^1) + (1-\lambda)f(x^2)$$

By the definition of a convex function, f is convex.

(1.5p) b) Let g₁, g₂,..., g_k: Rⁿ → R be concave functions. Consider the function g defined by g(**x**) = min{g₁(**x**), g₂(**x**), ..., g_k(**x**)}. g is a concave function.
Proof: Set f₁ = -g₁,..., f_k = -g_k. We get f = -g. Since g₁, g₂,..., g_k are concave functions, f₁, f₂,..., f_k are convex functions. From above, we know f is convex, so g is concave.

(3p) Question 4

(Linear programming) Use Strong duality to realize that the dual problem to (1) also must have an optimal solution, and hence, a feasible solution.

This feasibility does not change if **b** is perturbed to $\mathbf{b} + \delta \mathbf{b}$, independently of $\delta \mathbf{b}$. Which, by using Weak duality, implies that the perturbed problem cannot be unbounded.

(3p) Question 5

(modeling) Using the variables and parameters introduced in the question but extending to also include v_0 and z_0 , we yield that the problem is to

minimize	$l\sum_{k=1}^{K}f_kv_k$		(1)
subject to	$z_k - z_{k-1} = lv_k,$	$k = 1, \ldots, K$	(2)
	$\frac{m}{l}(v_k - v_{k-1}) = f_k - mg,$	$k = 1, \dots, K$	(3)
	$f_k \le b,$	$k = 1, \ldots, K$	(4)
	$f_k, z_k \ge 0,$	$k = 1, \ldots, K$	(5)
	$z_K = \bar{z}$		(6)
	$v_0 = z_0 = 0$		(7)

(true or false)

- (1p) a) False. The Simplex method is used for linear optimization problems.
- (1p) b) True. See theorem regarding sufficiency of the KKT conditions for convex optimization problems in the textbook.
- (1p) c) True. See theorem in the textbook regarding subgradients.

(3p) Question 7

(Exterior penalty method)

Using the quadratic penalty function, the penalty problem is given as follows:

minimize
$$F_{\nu}(\boldsymbol{x}) = 2e^{x_1} + 3x_1^2 + 2x_1x_2 + 4x_2^2 + \nu[3x_1 + 2x_2 - 6]^2$$

$$\begin{bmatrix} 2e^{x_1} + 6x_1 + 2x_2 + 6\mu[3x_1 + 2x_2 - 6] \end{bmatrix}$$

$$\nabla F_{\nu}(\boldsymbol{x}) = \begin{bmatrix} 2e^{-1} + 6x_1 + 2x_2 + 6\nu[3x_1 + 2x_2 - 6] \\ 2x_1 + 8x_2 + 4\nu[3x_1 + 2x_2 - 6] \end{bmatrix}$$

Since the penalty parameter $\nu = 10$, we get

$$F_{\nu}(\boldsymbol{x}) = 2e^{x_1} + 3x_1^2 + 2x_1x_2 + 4x_2^2 + 10[3x_1 + 2x_2 - 6]^2$$
$$\nabla F_{\nu}(\boldsymbol{x}) = \begin{bmatrix} 2e^{x_1} + 186x_1 + 122x_2 - 360\\ 122x_1 + 88x_2 - 240 \end{bmatrix}$$

Apply steepest descent method with exact line search,

$$\boldsymbol{x}^1 = (1,1)^T, \ \nabla F_{\nu}(\boldsymbol{x}) = \begin{bmatrix} 2e-52\\-30 \end{bmatrix}, \ d^1 = -\nabla F_{\nu}(\boldsymbol{x}) = \begin{bmatrix} 52-2e\\30 \end{bmatrix}.$$

Solve the minimization problem min $F_{\nu}(\boldsymbol{x}^1 + \lambda d^1)$, we get the step length $\lambda^* = 0.004$, so

$$\boldsymbol{x}^2 = \boldsymbol{x}^1 + \lambda^* d^1 = [1.86, 1.12]^T$$