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Question 1

(Simplex method) Consider the problem

maximize x1 − x2
subject to 2x1 + x2 ≥ 2

x1 − x2 ≤ 2

x1, x2 ≥ 0

a) Convert the problem to standard form.(0.5p)

b) Solve the problem using Phase I and Phase II of the simplex method. Use you(1.5p)
calculations to provide an optimal solution or a unbounded ray in the original
variables.

c) Derive the set of optimal solutions by analysing the reduced costs of the final(1p)
iteration and conducting another minimum ratio test.

Question 2

(Representation theorem)

Consider the problem to minimizex∈P f(x), where P is a non-empty polyhedron.

a) Assume that f is a concave function and that the problem has an optimal solution.(2p)
Does the set of optimal solutions contain an extreme point of P? Prove or provide
a counter example.

b) Assume that f is a convex function. Does the set of optimal solutions always(1p)
contain an extreme point of P? Prove or provide a counter example.

Question 3(3p)

(Convexity)

Let f1, f2, . . . , fk : Rn → R be convex functions. Consider the function f defined by
f(x) = max{f1(x), f2(x), . . . , fk(x)}.

a) Show that f is convex.(2p)

b) State and prove a similar result for concave functions.(1p)
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Question 4(3p)

(Linear programming)

Consider the problem to

minimize cTx,

subject to Ax = b, (1)

x ≥ 0,

and the perturbed version of the problem where the right-hand-side is changed from
b to b + δb. Show that if the original problem (1) has an optimal solution then the
perturbed version cannot be unbounded, independently of δb.

Question 5(3p)

(Modelling)

A rocket launching problem. Suppose that we are to send a rocket to the altitude of z̄
[m] in time T [s]. Let z(t) [m] denote its height above the ground at time t and f(t)
[N] be the non-negative upward force of the rocket thrusters at time t. Let the mass
of the rocket be m [kg], the maximal thrust of the rocket be b [N], an let v(t) = z′(t)
[m/s] denote the upward velocity.

Formulate an optimization problem, with a quadratic objective function and affine
constraints, that minimizes the energy required for the rocket to reach the desired
altitude at time T .

Hints: The amount of energy required can be computed by∫ T

0

f(t)v(t) dt,

and the equation of motion is

mv′(t) +mg = f(t), t ∈ [0, T ].

Assume that the time interval is divided into K periods of length l := T/K and let
fk := f(lk), zk := z(lk), vk := v(lk), k = 1, . . . K. Then approximate the velocity and
acceleration using finite differences, e.g., vk = (zk − zk−1)/l, k = 1, . . . , K. Similarly,
approximate the integral as a Riemann sum.
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Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate
your answers!

a) Claim: The Simplex method is a suitable solution method for problems where a(1p)
convex objective function should be optimized over a polytope.

b) Claim: For a convex optimization problem, every KKT-point is a global optimal(1p)
solution.

c) Consider a convex function f : Rn 7→ R.(1p)

Claim: If f is differentiable at a point x̄ ∈ Rn, then the identity ∂f(x̄) =
{∇f(x̄)} holds.

Question 7(3p)

(Exterior penalty method)

Consider the following problem:

minimize f(x) := 2ex1 + 3x21 + 2x1x2 + 4x22,

subject to 3x1 + 2x2 − 6 = 0.

Formulate a suitable exterior penalty function with the penalty parameter ν = 10.
Starting at the point (1, 1), perform one iteration of a gradient method to solve the
unconstrained penalty problem.
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Note: the solutions presented here are brief in relation to the requirements on your
answers, in particular regarding your motivations.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 1

Question 1

(Simplex method)

a) The problem on standard form is:(0.5p)

minimize −x1 +x2

subject to 2x1 +x2 − s1 = 2

x1 −x2 + s2 = 2

x1, x2, s1, s2 ≥ 0

b) Utilizing that s2 can be for the initial BFS, the phase I problem is(1.5p)

minimize + a1

subject to 2x1 +x2 − s1 + a1 = 2

x1 −x2 + s2 = 2

x1, x2, s1, s2, a1 ≥ 0

Our basic variables are (a1, s2) and our non-basic are (x1, x2, s1), we get

B = B−1 =

[
1 0
0 1

]
, N =

[
2 1 −1
1 −1 0

]
, cB =

[
1
0

]
, cN = 0, xB =

[
2
2

]
.

The reduced costs for the non-basic variables are

c̄TN = cTN − c̄TBB−1N = −
[
1 0

] [2 1 −1
1 −1 0

]
=
[
−2 −1 1

]
,

by the minimum reduced cost rule, x1 enter the basis. We have that B−1N1 =[
2
1

]
, the minimum ratio test is thus

argmin
i|(B−1N1)i>0

(xB)i
(B−1N1)i

= argmin
i|(B−1N1)i>0

[
2
2

2
1

]
And thus a1 leaves the basis and Phase I is complete.

Our basic variables are (x1, s2) and our non-basic are (x2, s1), we get

B =

[
2 0
1 1

]
, B−1 =

[
1
2

0
−1

2
1

]
, N =

[
1 −1
−1 0

]
, cB =

[
−1
0

]
, cN =

[
1
0

]
, xB =

[
1
1

]
.

The reduced costs for the non-basic variables are

c̄TN =
[
1 0

]
−
[
−1 0

] [ 1
2

0
−1

2
1

]
︸ ︷︷ ︸

=
[
−1

2
0
]

[
1 −1
−1 0

]
=
[
3
2
−1

2

]
,

by the minimum reduced cost rule, s1 enter the basis. We have that B−1N2 =[
−1

2
1
2

]
, the only positive denominator in the minimum ratio test corresponds to

s2, which leaves the basis.
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Our basic variables are (x1, s1) and our non-basic are (x2, s2), we get

B =

[
2 −1
1 0

]
, B−1 =

[
0 1
−1 2

]
, N =

[
1 0
−1 1

]
, cB =

[
−1
0

]
, cN =

[
1
0

]
, xB =

[
2
2

]
.

The reduced costs for the non-basic variables are

c̄TN =
[
1 0

]
−
[
−1 0

] [ 0 1
−1 2

]
︸ ︷︷ ︸

=
[
0 −1

]

[
1 0
−1 1

]
=
[
0 1

]
≥ 0,

since the reduced costs are all non-negative, we conclude that the current basis
is optimal, and the values of the original variables are x = (2, 0).

c) Since the reduced costs of s2 is strictly positive we deduce that s∗2 = 0. We let x2(1p)

enter the basis and do the minimum ratio test. Note that B−1N1 =

[
−1
−3

]
imply

that the entire ray

xB = B−1b− γB−1N1, x2 = γ, s2 = 0, γ ≥ 0,

is feasible. Since the reduced costs of x2 is zero we yield that the ray is a set of
optimal solutions. Returning to the original variables we get that x = (2 + γ, γ)
is an optimal solution for each γ ≥ 0. Noting that this is precisely the set for
which s2 = 0 and thus it equals the set of optimal solutions.

Question 2

(Representation theorem)

a) Let xi, i ∈ I be the extreme points and dj, j ∈ J be the extreme directions of P ,(2p)
respectively. Then we have by the representation theorem that

P =

{∑
i∈I

λixi +
∑
j∈J

µjdj

∣∣∣∣∣∑
i∈I

λi = 1,λ,µ ≥ 0

}
.

Now, consider the optimal solution x∗ ∈ P that exists by assumption, i..e, f(x∗) ≤
f(x), x ∈ P .

First we will show that µ∗ = 0 or that such a choice exists. Let j ∈ J be
such that µ∗j > 0 and consider the line segment between µ1

j = 0, µ2
j = 2µ∗j ,

and let x1, x2 be the corresponding points, by the concavity of f we have that
f(x1)/2 + f(x2)/2 ≤ f(x∗). Hence, by the optimality of x∗ we yield that f(x1) =
f(x2) = f(x∗), showing that µj = 0 is also a optimal choice.

Similarly assume that x∗ is an optimal solution but not an extreme point. By
the concavity of f we have that

f(x∗) = f(
∑
j∈I

λixi) ≥
∑
j∈I

λif(xi)
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However, since f(xi) ≥ f(x∗), we get that λi = 0 if f(xi) > f(x∗) and for λi > 0,
f(xi) = f(x∗). Thus, x∗ is a convex combination of optimal extreme points.

b) Consider the counter-example, f(x) = x2, P = [−1, 1], the extreme-points are(1p)
clearly non-optimal.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 4

Question 3(3p)

(Convexity)

a) Consider x̄ = λx1 + (1− λ)x2.(1.5p)

f(x̄) = max{f1(x̄), f2(x̄), . . . , fk(x̄)}
since fi(x) convex

≤ max{λf1(x1) + (1− λ)f1(x
2), . . . , λfk(x

1) + (1− λ)fk(x
2)}

≤ λmax{f1(x1), . . . , fk(x1)}+ (1− λ)max{f1(x2), . . . , fk(x2)}
= λf(x1) + (1− λ)f(x2)

By the definition of a convex function, f is convex.

b) Let g1, g2, . . . , gk : Rn → R be concave functions. Consider the function g defined(1.5p)
by g(x) = min{g1(x), g2(x), . . . , gk(x)}. g is a concave function.

Proof: Set f̄1 = −g1, . . . , f̄k = −gk. We get f̄ = −g. Since g1, g2, . . . , gk are
concave functions, f1, f2, . . . , fk are convex functions. From above, we know f is
convex, so g is concave.

Question 4(3p)

(Linear programming) Use Strong duality to realize that the dual problem to (1) also
must have an optimal solution, and hence, a feasible solution.

This feasibility does not change if b is perturbed to b+δb, independently of δb. Which,
by using Weak duality, implies that the perturbed problem cannot be unbounded.

Question 5(3p)

(modeling) Using the variables and parameters introduced in the question but extending
to also include v0 and z0, we yield that the problem is to

minimize l

K∑
k=1

fkvk (1)

subject to zk − zk−1 = lvk, k = 1, . . . , K (2)
m

l
(vk − vk−1) = fk −mg, k = 1, . . . , K (3)

fk ≤ b, k = 1, . . . , K (4)

fk, zk ≥ 0, k = 1, . . . , K (5)

zK = z̄ (6)

v0 = z0 = 0 (7)
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Question 6

(true or false)

a) False. The Simplex method is used for linear optimization problems.(1p)

b) True. See theorem regarding sufficiency of the KKT conditions for convex opti-(1p)
mization problems in the textbook.

c) True. See theorem in the textbook regarding subgradients.(1p)

Question 7(3p)

(Exterior penalty method)

Using the quadratic penalty function, the penalty problem is given as follows:

minimize Fν(x) = 2ex1 + 3x21 + 2x1x2 + 4x22 + ν[3x1 + 2x2 − 6]2

∇Fν(x) =

[
2ex1 + 6x1 + 2x2 + 6ν[3x1 + 2x2 − 6]

2x1 + 8x2 + 4ν[3x1 + 2x2 − 6]

]
Since the penalty parameter ν = 10, we get

Fν(x) = 2ex1 + 3x21 + 2x1x2 + 4x22 + 10[3x1 + 2x2 − 6]2

∇Fν(x) =

[
2ex1 + 186x1 + 122x2 − 360

122x1 + 88x2 − 240

]
Apply steepest descent method with exact line search,

x1 = (1, 1)T , ∇Fν(x) =

[
2e− 52
−30

]
, d1 = −∇Fν(x) =

[
52− 2e

30

]
.

Solve the minimization problem min Fν(x
1 + λd1), we get the step length λ∗ = 0.004,

so
x2 = x1 + λ∗d1 = [1.86, 1.12]T


