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Question 1

(the simplex method)

Consider the problem (P) to:

maximize z = x1 + x2,

subject to 2x1 + x2 ≤ 2,

x2 ≤ 1,

−x1 + x2 ≤ 1/2,

x1 − x2 ≤ 1/2,

x1, x2 ≥ 0.

a) Formulate the dual linear problem to (P) and convert the dual linear problem to(1p)
standard form.

b) Solve the dual linear problem using phase I and phase II of the simplex method.(1.5p)
Present an optimal solution to the dual linear problem or determine that no such
exist.

c) Present an optimal solution to the original problem (P) or determine that no such(0.5p)
exists. Utilize that the simplex algorithm computes the value of both primal- and
dual variables.

Question 2(3p)

(unconstrained optimization)

Let f(x) := x21 + 2x1x2 − 2x22 + 4x1 and x0 = (0, 0)T. Find the search directions at x0

for the following three unconstrained optimization methods:

a) The steepest descent method,

b) Newton’s method,

c) Newton’s method with the Levenberg–Marquardt modification using γ = 8 (where
γ is the amount added to the diagonal of the Hessian).

In general, for which of the methods a)–c) are the directions found always descent
directions? Motivate your answer.
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Question 3(3p)

(Lagrangian relaxation)

Consider the problem to

minimize z = x1 − 2x2,

subject to x1 − x2 ≥ 2,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

a) Lagrangian relax the first constraint. Use Lagrangian duality to obtain the opti-(2p)
mal objective value z∗.

b) Use complementary slackness to obtain the optimal solution x∗.(1p)

Question 4(3p)

(KKT conditions)

Consider the problem to

minimize x1x2 + x1x3 + x2x3,

subject to x1 + x2 + x3 = 12.

a) Write down the KKT conditions for the problem, and find all KKT points.(2p)

b) Does the problem have an optimal solution? Motivate!(1p)
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Question 5(3p)

(modelling)

You are constructing a wooden product requiring N boards of lengths li, i = 1, . . . , N .
Your local supplier currently has a stock of M boards with lengths Lj and at the prices
pj, j = 1, . . .M , where two boards of the same length and price are said to be of the
same type. Let Sk ⊂ {1, . . . ,M}, denote all boards of type k and dk = pj, j ∈ Sk, be
the common price for board of type k, k = 1, . . . , K.

Moreover, each board bought can be cut, hence it can be enough for several boards of
your wooden product. For example, if L1 = 3, l1 = l2 = 1, then since l1 + l2 ≤ L1, the
boards 1 and 2 of your wooden product can originate from board 1 in the stock.

The supplier also has an offer: every 4th board you buy of the same type, is for free.

Formulate an integer linear problem minimizing the cost of the boards purchased for
your wooden product.

Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate
your answers!

In each of the statements we consider x∗ = (0, 0)T and the problem to:

minimize z = x1,

subject to x22 − x1x2 + x2≤ 0,

x1, x2≥ 0.

a) Claim: x∗ is a unique KKT Point to the problem.(1p)

b) Claim: Abadie’s constraint qualification holds at x∗.(1p)

c) Claim: The interior penalty method can converge to x∗.(1p)
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Question 7(3p)

(convergence of an exterior penalty method)

Let us consider a general optimization problem:

minimize f(x),

subject to x ∈ S,
(1)

where S ∈ Rn is a non-empty, closed set and f : Rn → R is a given differentiable
function. We assume that the feasible set S of the optimization problem (1) is given
by the system of inequality and equality constraints:

S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m, (2)

hj(x) = 0, j = 1, . . . , `.}

where gi ∈ C0, i = 1, . . . ,m, and hj ∈ C0, j = 1, . . . , `.

We choose a function Ψ : R → R+ such that Ψ(s) = 0 if and only if s = 0 (typical
examples of Ψ are Ψ(s) = |s|, or Ψ(s) = s2), and introduce the function

νX̆S(x) = ν

(
m∑
i=1

Ψ(max{0, gi(x)}) +
∑̀
j=1

Ψ(hj(x))

)
(3)

where the real number ν is called a penalty parameter.

We assume that for every ν > 0 the approximating optimization problem to

minimize f(x) + νX̆S(x) (4)

has at least one optimal solution x∗
ν .

Prove the following theorem.

Theorem 1. Assume that the original constrained problem (1) possesses optimal so-
lutions. Then, every limit point of the sequence {xν}, ν → +∞, of globally optimal
solutions to (4) is globally optimal in the problem (1).
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Question 1

(the simplex method)

a) The dual problem in standard form becomes:(1p)

minimize z = 2y1 + y2 +
1

2
y3 +

1

2
y4,

subject to 2y1 − y3 + y4 − s1 = 1,

y1 + y2 + y3 − y4 − s2 = 1,

y1, y2, y3, y4, s1, s2 ≥ 0.

b) Introducing the artificial variable a1, phase I gives the problem(1.5p)

minimize w = a1,

subject to 2y1 − y3 + y4 − s1 + a1 = 1,

y1 + y2 + y3 − y4 − s2 = 1,

y1, y2, y3, y4, s1, s2, a2 ≥ 0.

Using the starting basis (a1, y2)
T gives

B =

(
1 0
0 1

)
,N =

(
2 −1 1 −1 0
1 1 −1 0 −1

)
,xB =

(
1
1

)
, cB =

(
1
0

)
, cN =


0
0
0
0
0

 .

The reduced costs, c̄TN = cTN−cTBB−1N , for this basis is c̄TN =
(
−2, 1, −1, 1 0

)
,

which means that y1 enters the basis. B−1N 1 =
(
2 1

)T
thus the minimum ratio

test implies that a1 leaves.

Thus, we move on to phase II using the basis
(
y1, y2

)T
, and

B =

(
2 0
1 1

)
,N =

(
−1 1 −1 0
1 −1 0 −1

)
,xB =

(
1
2
1
2

)
, cB =

(
2
1

)
, cN =


1
2
1
2

0
0

 .

The new reduced costs are c̄TN =
(
0, 1, 1

2
, 1

)
. Since the reduced costs are

all non-negative, the current BFS is optimal. The optimal solution to the dual
problem is hence

(
y1, y2, y3, y4

)
=
(
1
2
, 1

2
, 0, 0

)
with the objective value of

3
2
.

c) Since the primal variables of our original problem are the dual variables of the(.5p)
dual problem, we get that xT = cTBB

−1 =
(
1
2
, 1

)
.
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Question 2

(unconstrained optimization)

a) For the steepest descent method:

p = −∇f(x0) = (−4, 0)T

b) For Netwon’s method:

p = −[∇2f(x)]−1∇f(x0) = (−4/3,−2/3)T

c) For Levemberg-Marquardt method:

p = −[∇2f(x) + γI]−1∇f(x0) = (−4/9, 2/9)T

The methods a) and c) always finds descent directions (if γ is chosen large enough)

Question 3(3p)

(Lagrangian relaxation)

Lagrangian relax the first constraint, we can get:

L(x, µ) = x1 − 2x2 + µ(2− x1 + x2) = (1− µ)x1 + (µ− 2)x2 + 2µ.

q(µ) = max
x

L(x, µ) =


7µ− 10, µ ∈ [0, 1.5) x1 = 0, x2 = 5,
0.5, µ = 1.5 x1 + x2 = 5,
5− 3µ µ ∈ (1.5,∞) x1 = 5, x2 = 0.

So q∗ = 0.5, µ∗ = 1.5. Since the original problem is convex, and we have an interior
point, by strong duality, we can get z∗ = q∗ = 0.5.
For complementary slackness, we need to fulfill µ∗i gi(x

∗) = 0, since µ 6= 0, so gi(x
∗) = 0,

which means 2− x1 + x2 = 0. Combine with x1 + x2 = 5, we can get x∗ = (3.5, 1.5)T .
We can check that (x∗, µ∗) fulfilled all the conditions listed in Theorem 6.8, so x∗ is
the optimal solution for the original problem. The optimal value is 0.5.
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Question 4(3p)

(KKT conditions)

a) The KKT conditions are(2p)

∇f(x) + λ∇h(x) =

x2 + x3
x1 + x3
x1 + x2

+ λ

1
1
1

 =

0
0
0


There is only one feasible point fulfilling the KKT conditions:

x̄ = (4, 4, 4)T

with γ = −8.

b) The problem is undounded. Take x1 = M , x2 = M and x3 = 12 − 2M which(1p)
is feasible. The objective value is x1x2 + x1x3 + x2x3 = M2 + M(12 − 2M) +
M(12− 2M) = 24M − 3M2. Let M tend to infinity and you get an undounded
solution.

Question 5(3p)

(modelling)

Variables, let

• xij equal to one if the piece of length li is cut from the board of length Lj, and
equal to zero otherwise, i = 1, . . . , N , j = 1, . . . ,M .

• yj equal to one if the board of length Lj is purchased, j = 1, . . . ,M .

• zk be the number of times a discount has been retrieved for board of type k,
k = 1, . . . , K.

minimize
M∑
j=1

pjyj −
K∑
k=1

dkzk, (1)

s.t.
N∑
i=1

lixij ≤ Ljyj, j = 1, . . . ,M (2)

M∑
j=1

xij = 1, i = 1, . . . , N, (3)∑
j∈Sk

yj ≥ 4zk, k = 1, . . . , K, (4)

xij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . ,M (5)

yj ∈ {0, 1}, j = 1, . . . ,M. (6)

zk ∈ Z+, j = 1, . . . , K. (7)
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Question 6

(true or false)

a) True. The KKT conditions becomes(1p)

∇f(x)+
3∑

i=1

µi∇gi(x) =

(
1
0

)
+µ1

(
−x2

2x2 − x1 + 1

)
+µ2

(
−1
0

)
+µ3

(
0
−1

)
=

(
0
0

)
gi(x) ≤ 0, µi ≥ 0, µigi(x) = 0, i = 1, 2, 3

Where µ2 > 0⇒ x =

(
0
0

)
and µ2 = 0 leads to an inconsistent system.

b) True. We check if the gradient cone and tangent cone are equal. The gradient(1p)
cone is G(x∗) = {p ∈ R2 |x2 ≤ 0, x1 ≥ 0, x2 ≥ 0} = {p ∈ R2 |x1 ≥ 0, x2 = 0}.
For the tangent cone, let {xk} ⊂ S be any sequence of points converging to x∗,
thus for any ε > 0 ∃K such that xk

1 ≤ ε, ∀k ≥ K. Assuming that xk
2 > 0

leads to a contradiction that xk
1 > 1 thus xk

2 = 0, ∀k ≥ K. We thus get that
G(x∗) = TS(x∗), i.e., Abadie’s CQ holds.

c) False. Since any sequence of converging points must satisfy xk
2 = 0, we have that(1p)

there exist no sequence of strict interior points that converge to x∗.

Question 7(3p)

(convergence of an exterior penalty method)

See Theorem 13.3 in the course book.


