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Exam instructions

When you answer the questions

Use generally valid theory and methods.
State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.
Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.
Mark on the cover the questions you have answered.
Count the number of sheets you hand in and fill in the number on the cover.
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Question 1
(the simplex method)

Consider the following linear program:

maximize z = x; + 29,

subject to T+ oz > —1,
T — x> 1,
T, x9 > 0.

a) Solve the problem using phase I and phase II of the simplex method.

Aid: You may utilize the identity

a b\ 1 d —b
c d S ad—bc\ —¢c a )’
b) If an optimal solution exists, then use your calculations to decide whether

it is unique or not. If the problem is unbounded, then use your calculations
to specify a direction of unboundedness of the objective value.
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Question 2
(gradient projection)

The gradient projection algorithm is a generalization of the steepest descent
method to problems defined over convex sets. Given a point @x; the next point
is obtained according to @1 = Projy[xy — a,V f(xr)], where X is the con-
vex set over which we minimize, g, > 0 is the step length, and Projy(y) :=
argmin, . y||x — y|| (i.e., the closest point in X to y). Note that if X = R then
the method reduces to the method of steepest descent.

Consider the optimization problem to

minimize f(x) := 2% + 223 + 27175 — 271,
subject to 0 <z <1,

Start at the point o = (0,2)T and perform one iteration of the gradient pro-
jection algorithm using step length o = 1/8. Note that the special form of
the feasible region X makes the projection very easy! Is the point obtained a
global /local optimum? Motivate why/why not!

Question 3
(optimality conditions for special feasible sets)

Consider the problem of minimizing the function f(x) :==>_,_, , fij(z;) over a
set of the form S = {xz € R" | 37 x; = b; x; > 0,Vj }. We assume that f is
in C! on S, and of course that b > 0, such that S is non-empty.

This problem is often referred to as the resource allocation problem, since it
entails allocating fractions of the resource b to “activity levels” z; in an optimal
manner, considering the minimization of the “cost function” f, and the available
resources, represented by the value of b.

Utilize the optimality conditions for differentiable optimization over closed, con-
vex sets to establish that any stationary point &* must satisfy the conditions
that for some value p* € R it holds that fi(z}) = p*, for all j with z} > 0, while
fi(x}) > p*, for all j with 27 = 0.
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Question 4
(Karush-Kuhn-Tucker)
Consider the following problem:

minimize  f(x) := 22, — 22,
subject to x] + x5 > 25,
1
4,
0.

X2

IV IA A

T1,T2

a) State the KKT-conditions for the problem and check whether they are
necessary or not, sufficient or not.

b) Find all KKT-points. Are the KKT points optimal? Motivate!

Question 5
(modelling)

The set covering problem is a classical question in combinatorics, computer sci-
ence and complexity theory. Given a set of elements U = {1, 2, ...,n} (called the
universe) and a collection S of m sets whose union equals the universe, the set
cover problem is the problem to identify the smallest sub-collection of & whose
union equals the universe.

For example, consider the universe U = {1,2,3,4,5} and the collection of sets
S = {{1,2,3},{2,4},{3,4},{4,5}}. Clearly the union of S is Y. However,
we can cover all of the elements with the following, smaller number of sets:
{{1,2,3},{4,5}}. This is also the smallest sub-collection whose union is U.

A generalization of this problem is the weighted set covering problem where each
set in S has a cost associated with it. The objective in the weighted set covering
problem is to find a sub-collection of & whose union equals the universe, and so
that the sum of the costs of the sets in the sub-collection is minimized.

Formulate an integer linear program (a linear objective function, linear con-
straints, and integrality restrictions on the variables) which models the weighted
set covering problem.
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Question 6
(true or false)

The below three claims should be assessed. Are they true or false, or is it impos-
sible to say? Provide an answer, together with a short, but complete, motivation.

a) Suppose the function f: R™ — R is differentiable at a vector € R".

Claim: for the vector p € R™ to be a descent direction with respect to f at
x it is necessary that Vf(x)Tp < 0.

b) Suppose you attack the problem of minimizing the twice continuously dif-
ferentiable function f : R® — R by means of Newton’s method, using an
exact line search. Suppose the iterate is !, and that the result of iteration
t is the next iterate x'*!.

Claim: V f ("™ ('™ — ') = 0 holds.

c) Claim: A line segment in R™ is not a polyhedron.

Question 7
(Farkas' lemma)
Farkas’ Lemma can be states as follows:

Let A be any m x n matriz and b an m x 1 vector. Then exactly one of the two
systems

Az = b,
x> 0",

and
ATy S Om7
by >0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.
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Question 1

(the simplex method)

(2p) a) Rewrite the problem into standard form by adding/subtracting slack vari-
ables s; and s, to the left-hand side in the first and second constraint,
respectively. Moreover, let z := —z to get the problem on minimization
form. Thus, we get the following linear program:

minimize z= —x; — 2o,

subject to —x1 — X9 + 8 =1,
r1 — T — SS9 = ]_,
xy, Ta, S1, S9 Z 0.

Introducing the artificial variable a, phase I gives the problem

minimize w = a,

subject to —x1 — X9 + 8 =1,
1 — X9 — S +a = 1,
1, To, S1, So, a >0.

Using the starting basis (s, a)? gives

10 -1 -1 0 1 0
p=(p )= 5 )= ()= () e

The reduced costs, €& = ¢k —cLB™' N, for this basisis ¢k = (-1 1 1),

which means that x; enters the basis. The minimum ratio test implies that
a leaves.

o O

Thus, we move on to phase II using the basis (s1,z;)7, and

-3 )= e (o () (3)

The new reduced costs are ¢k = (—3 —1)

which means that x5 enters the basis. From the minimum ratio test we get
BN, = (—2 —1)T < 0, meaning that the problem is unbounded.
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b) A direction of unboundedness is I(u) = (1 0 2 O)T +p(l 1 2 O)T,
p = 0.

Question 2
(gradient projection)

The gradient of f at the point &y = (0,2)7 is Vf(xy) = (2,8)T. Taking a
step in the negative gradient direction with o = 1/8 gives the new point xy —

Projecting this point to the feasible set yields the new iterate &; = (0, 1).

This point is clearly neither a local nor a global minimum. To check this, perform
another iteration and see that the new iterate is not the same as x;.

Question 3
(optimality conditions for special feasible sets)

Thanks to the linearity of the constraints, the problem satisfies the Abadie con-
straint qualification and the Karush—Kuhn—Tucker conditions are necessary for
the local optimality of . Introducing the multiplier p for the equality con-
straint and A; for the sign constraints on x; we obtain the Lagrangian function
L, pu, X) = b+ 37 (fi(w5) + [ — Ajlzj). Assume that (x*, p*, X) is a KKT
point. Setting the partial derivatives of L to zero yields

o) = A — j=1,...,n, (1)

and further, from complementarity, that

For a j with 3 > 0 it must then hold that ¢’(z}) = —u*. Suppose instead that
x; = 0. Then since A} > 0 must hold, we find, from the characterization (1), that
¢i(x5) = Aj — p* > —p*, and we are done.
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Question 4

(Karush—Kuhn—Tucker)

a)

b)

Let gi(x) := —22 — 23+ 25, go(x) := 11 — 4, g3(x) := 19 — 4, g4(x) := —1
and gs(x) := —xywith respective gradients Vg, = (—2x,, —2x9)7, Vg =
(1,O)T ,Vgg = (0, 1)T , Vg4 = (—1,O)T and Vg5 = (O, —1)T.

Moreover, Vf = (—2x; 4+ 2,0)”. The KKT-conditions are as follows:

Vi) + X0, mVai(a®) =0,
wigi(z*) =0,i=1,...,5,
w>0i=1,..5

Since the objective function f is not convex, the KKT conditions are not
sufficient.

To prove KKT conditions are necessary, we use LICQ. For the interior
points, there is no active constraints, and for the points on the boundary
but not extreme points, there is only one active constraint, so the gradient
of the active constraint must be linearly independent. So we only need
to check three extreme points: (4,3)7,(3,4)7, (4,4)T. For point (4,3)7,
the gradient of the active constraints are (—8,—6)7 and (1,0)7, obviously
they are linearly independent. For point (3,4)7, the gradient of the active
constraints are (—6, —8)7 and (1, 0)7, obviously they are linearly indepen-
dent. For point (4, 4)T, the gradient of the active constraints are (0,1)7 and
(1,0)T, obviously they are linearly independent. So LICQ holds at every
feasible point. Thus, the KKT-conditions are necessary.

By letting different combinations of constraints be active, we can see when
only g¢o active, we get (4,a),3 < a < 4 are KKT points. When g; and
g2 are active, we get (4,3) is a KKT point. When ¢, and g3 are active,
we get (4,4) is a KKT point. So (4,a),3 < a < 4 are KKT points. Since
KKT conditions are necessary, so the optimal solution must be KKT points.
Since all KKT points give the same objective function value —8, so all the
KKT points are optimal.
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Question 5
(modelling)

Let Si1,S9,...,Sn be the sets, and let U = {1,...n} be the universe to cover.
Now let the binary parameters s;; = 1 if the element j is in the set §; for
ie{l,...,m}and j € {1,...,n}, and s;; = 0 otherwise. Let w; be the weight
of set S;.

Let x; be a binary variable where x; = 1 if set S; is included in the sub-collection,
where i € {1,...,m}, and x; = 0 otherwise. The weighted set covering problem
can now be formulated as:

m
minimize Z w; S;,
i=1
m
subject to Zsijxi >1, je{l,....,n},
i=1

ry; € {0,1}

Question 6

(true or false)

a) False. Consider f(z) = 23 at x = 0; a negative direction from 0 clearly
reduces the value of f, while f’(0) = 0.

b) True. The claim is a characterization of the line search being exact in the
t

direction of the vector 't — .

c) False. The solution set of the two linear inequalities a™@ > b and a’x < b,
defines, by definition, a polyhedron, as it is the solution set of a collection
of linear inequalities. On the other hand, the solution set also is a line
segment in R".
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(3p) Question 7
(Farkas' lemma)

See the course book.




