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Question 1

(the simplex method)

The following linear optimization problem is given:

maximize z = −x1− 2x2,

subject to −x1 + x2 ≤ 5,

x2 ≥ 2.

a) Rewrite the problem to standard form by adding slack variables to both(1p)
constraints.

b) Solve the problem using phase I and phase II of the simplex method.(2p)

Aid: You may utilize the identity(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

Question 2

(Lagrangian duality and convexity)

Consider the problem to find

f ∗ = infimum (x1 − 1)2 − 2x2,

subject to x1 − 2x2 ≥ −2, (C)

x1, x2 ≥ 0.

a) Lagrangian relax the constraint (C), and evaluate the dual function q at(2p)
µ = 0 and µ = 2. Provide a bounded interval containing f ∗.

b) Show that for a general convex function f : Rn 7→ R and any x ∈ Rn, the(1p)
subdifferential ∂f(x) is a convex set.
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Question 3

(Karush-Kuhn-Tucker)

Consider the following problem:

minimize f(x) := −(x1 − 3)2 − (x2 − 1)2,

subject to x1 + x2 ≤ 5,

x1, x2 ≥ 0.

a) State the KKT-conditions for the problem and verify that they are neces-(1p)
sary.

b) Find all KKT-points, both graphically and analytically. What is the global(2p)
optimum?

Question 4(3p)

(unconstrained optimization)

Let f(x) := x21 + 2x1x2 − 2x22 + 4x1 and x̄ = (0, 0)T. Find the search directions
at x̄ for the following three unconstrained optimization methods:

a) Steepest descent method,

b) Newton’s method,

c) Newton’s method with the Levenberg-Marquardt modification using γ = 8
(where γ is the amount added to the diagonal of the Hessian).

In general, for which of the methods a)-c) are the directions found always descent
directions? Motivate your answer.
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Question 5(3p)

(modelling)

There are 7 wind turbines, which all need to be maintained once during the week.
There are two maintenance teams: maintenance team 1 and maintenance team
2. There is no difference between the two maintenance teams. The maintenance
teams only work on workdays, i.e. from Monday to Friday. It takes one mainte-
nance team a full day to maintain one wind turbine. Due to different locations
of each wind turbine and the weather of the date, the maintenance costs are
different. The costs are stated in Table 1. The costs are the same for both main-
tenance teams.
Formulate an integer linear model to minimize the maintenance cost.

turbine Mon Tue Wed Thu Fri
1 10 11 12 13 14
2 12 14 16 18 20
3 17 18 17 18 17
4 20 19 18 17 16
5 22 22 22 22 33
6 24 23 22 23 23
7 9 6 8 7 9

Table 1: Maintenance costs [103 $] of different wind turbines in different days

Question 6

(true or false)

The below three individual claims should be assessed individually. Are they true
or false, or is it impossible to say? For each of the three statements, provide an
answer, together with a short—but complete— motivation.

a) Consider a minimization problem, where the objective function is convex,(1p)
and the feasible set is

{x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m; hi(x) = 0, i = 1, . . . , k}, (1)

where gi : Rn 7→ R, i = 1, . . . ,m, and hi : Rn 7→ R, i = 1, . . . , k are convex
functions.

Claim: The problem is a convex optimization problem.
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b) Let f(x) := ln
(∑n

j=1 e
ajxj

)
, where aj ∈ R, j = 1, ..., n are constants;(1p)

Claim: f is a convex function.

c) Consider the program(1p)

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

where the functions f and gi, i = 1, . . . ,m, are convex. Suppose that x∗ is
a globally optimal solution to this problem, and that gk(x∗) < 0 for some
index k ∈ {1, . . . ,m}.
Claim: If we remove constraint k from the problem its set of optimal solu-
tions is unchanged.

Question 7(3p)

(LP duality)

Consider the following standard form of a linear program:

minimize cTx

subject to Ax = b,

x ≥ 0

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. State and prove the Strong Duality
Theorem in linear programming.
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Question 1

(the simplex method)

a) Rewrite the problem into standard form by letting x1 := x+1 − x−1 and(1p)
adding/subtracting slack variables s1 and s2 to the left-hand side in the
first and second constraint, respectively. Moreover, let z := −z to get the
problem on minimization form. Thus, we get the following linear program:

minimize z = x+1 − x−1 + 2x2,

subject to −x+1 + x−1 + x2 + s1 = 5,

x2 − s2 = 2,

x+1 , x−1 , x2, s1, s2 ≥ 0.

b) Introducing the artificial variable a, phase I gives the problem(2p)

minimize w = a,

subject to −x+1 + x−1 + x2 + s1 = 5,

x2 − s2 + a = 2,

x+1 , x−1 , x2, s1, s2, a ≥ 0.

Using the starting basis (s1, a)T gives

B =

(
1 0
0 1

)
,N =

(
−1 1 1 0
0 0 1 −1

)
,xB =

(
5
2

)
, cB =

(
0
1

)
, cN =

0
0
0

 .

The reduced costs, c̄TN = cTN−cTBB−1N , for this basis is c̄TN =
(
0 0 −1 1

)
,

which means that x2 enters the basis. The minimum ratio test implies that
a leaves.

Thus, we move on to phase II using the basis (s1, x2)
T , and

B =

(
1 1
0 1

)
,N =

(
−1 1 0
0 0 −1

)
,xB =

(
3
2

)
, cB =

(
0
2

)
, cN =

 1
−1
0

 .

The new reduced costs are c̄TN =
(
1 −1 2

)
which means that x−1 enters

the basis. The minimum ratio test implies that s1 leaves.
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Updating the basis, now with (x−1 , x2)
T , gives

B =

(
1 1
0 1

)
,N =

(
−1 1 0
0 0 −1

)
,xB =

(
3
2

)
, cB =

(
−1
2

)
, cN =

1
0
0

 .

The new reduced costs are c̄TN =
(
0 1 3

)
which means that the current

basis is optimal. The optimal solution is thus

x∗ =
(
x+1 x−1 x2 s1 s2

)T
=
(
0 3 2 0 0

)T
with optimal objective function value z∗ = 1.

Question 2

(Lagrangian duality and convexity)

a) We create the Lagrangian function(2p)

L(x, µ) = (x1−1)2−2x2+µ(2x2−x1−2) =
(
x21 − 2x1 − µx1

)
+2(µ−1)x2+1−2µ.

(1)
The dual function then is

q(µ) = min
x≥0

L(x, µ) = 1− 2µ+ min
x1≥0

(
x21 − 2x1 − µx1

)
+ min
x2≥0

2(µ− 1)x2. (2)

At µ = 0, since the objective function coefficient for x2 is negative, letting
x2 → ∞ yields unbounded solutions to the Lagrangian subproblem. Thus
q(0) = −∞. At µ = 2, to minimize the convex quadratic problem in x1 we
let x1 = 1 + µ/2 = 2, and x2 = 0. Thus q(2) = −7. By weak duality it
follows that q(2) ≤ f ∗. To find an upper bound, choose any feasible point,
e.g. (x1, x2) = (1, 1), which has objective value −2. Hence f ∗ ∈ [−7,−2].

b) See course book.(1p)



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 3

Question 3

(Karush-Kuhn-Tucker)

a) Let g1(x) := x1 + x2 − 5, g2(x) := −x1 and g3(x) := −x2, with respective(1p)
gradients (1, 1)T , (−1, 0)T and (0,−1)T .
Moreover, ∇f = (−2(x1 − 3),−2(x2 − 1))T . The KKT-conditions are as
follows:

−2(x1 − 3) + µ1 − µ2 = 0,

−2(x2 − 1) + µ1 − µ3 = 0,

µ1, µ2, µ3 ≥ 0,

x1 + x2 − 5 ≤ 0,

−x1 ≤ 0,

−x2 ≤ 0,

µ1(x1 + x2 − 5) = 0,

µ2(−x1) = 0,

µ3(−x2) = 0.

Since the functions gi, i = 1, 2, 3, are convex and there exists an inner point
(for example (1, 1)T ), the problem satisfies Slater CQ. Thus, the KKT-
conditions are necessary.

b) By visually analyzing the figure, we can see that there is a total of 7 KKT-(2p)
points. To find all of them analytically, let different combinations of con-
straints be active and solve for x in the KKT-conditions.

For instance, let g1 be the only active constraint. Then, x1 + x2 − 5 = 0
and µ2 = µ3 = 0. This, together with the first two KKT-conditions, gives
that x1 = 7

2
and x2 = 3

2
. Thus, we get the KKT-point x1 = (7

2
, 3
2
)T .

Similar calculations for other active constraints gives the KKT-points
x2 = (3, 0)T , x3 = (0, 1)T , x4 = (5, 0)T , x5 = (0, 5)T , x6 = (0, 0)T and
x7 = (3, 1)T . Note that x7 is found when there are no active constraints,
i.e. an inner point where ∇f(x) = 0.

Since the KKT-conditions are necessary, the global optimum must be in at
least one KKT-point. Trying all of them gives f ∗ = −25 for
x∗ = x5 = (0, 5)T .
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Question 4

(unconstrained optimization)

We have that

∇f(x) = (2x1 + 2x2 + 4, 2x1 − 4x2)
T, ∇2f(x) =

(
2 2
2 −4

)
(1)

a) For the steepest descent method:

p = −∇f(x̄) = (−4, 0)T (2)

b) For Newtons method:

p = −
[
∇2f(x̄)

]−1∇f(x̄) = (−4/3,−2/3)T (3)

c) For Newtons method with Levenberg-Marquardt modification:

p = −
[
∇2f(x̄) + γI

]−1∇f(x̄) = (−4/9, 2/9)T (4)

The methods a) and c) always finds descent directions (if γ is chosen large
enough).

Question 5(3p)

(modelling)

A suggested integer programming formulation is as follows:

Sets:
L := {i|i ∈ {1, ..., 7}}, the set of wind turbines,
M := {j|j ∈ {Mon, ..., F ri}}, the set of different days,
N := {k|k ∈ {1, 2}}, the set of two maintenance teams.

To simplify the problem, we add a parameter cij i ∈ L, j ∈ M, are the mainte-
nance cost for different wind turbines at each day.
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The decision variables are:

xi,j,k =

{
1 if maintenance team k ∈ N maintain wind turbine i ∈ L at day j ∈M,
0 otherwise.

Model:

minimize
∑
i∈L

∑
j∈M

∑
k∈N

cjixijk,

subject to
∑
j∈M

∑
k∈N

xijk = 1 i ∈ L,∑
i∈L

xijk ≤ 1 k ∈ N , j ∈M,

xijk ∈ {0, 1} i ∈ L, j ∈M, k ∈ N .

Question 6

(true or false)

a) The claim is false. The functions hi, i = 1, . . . , k defining the equality(1p)
constraints must be affine.

b) The claim is true.(1p)
Choose arbitrary two points, x1 and x2, an α ∈ [0, 1],

αf(x1) + (1− α)f(x2)

= α ln
n∑
j=1

eajx
1
j + (1− α) ln

n∑
j=1

eajx
2
j

= ln
n∑
j=1

eajx
1
jα + ln

n∑
j=1

eajx
2
j (1−α)

= ln
n∑
j=1

eajx
1
jα

n∑
j=1

eajx
2
j (1−α) since ex > 0, ∀x ∈ R

≥ ln
n∑
j=1

eajx
1
jαeajx

2
j (1−α)

= ln
n∑
j=1

eaj(x
1
jα+x

2
j (1−α))

=f(αx1 + (1− α)x2)
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By definition, f is a convex function.

c) The claim is false. Consider the linear program to minimize x2 subject to(1p)
the constraints 0 ≤ xj ≤ 4, j = 1, 2, and the additional constraint that
x1 + x2 ≤ 2. This problem has the optimal solution set X∗ = {x ∈ R2|x1 ∈
[0, 2];x2 = 0}. At the optimal solution x∗ = (1, 0)T, x1 + x2 < 2 holds.
Believing that this means that the constraint x1 + x2 ≤ 2 therefore is
redundant results, however, in a grave mistake, as the new problem has the
optimal set X∗new = {x ∈ R2|x1 ∈ [0, 4];x2 = 0}.

Question 7

(LP duality)

See Theorem 10.6 in the course book.


