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Question 1

(the simplex method)

Consider the following linear program:

maximize z = 5x1 + 4x2,

subject to x1 ≤ 7,

x1 − x2 ≤ 8.

x1, x2 ≥ 0.

a) Solve the problem using phase I and phase II of the simplex method. If(2p)
the problem has an optimal solution, then present the optimal solution in
both the original variables and in the variables used in the standard form.
If the problem is unbounded, then use your calculations to find a direction
of unboundness in both the original variables and in the variables in the
standard form.
Aid: Utilize the identity(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

b) Add a constraint to the linear program considered to obtain a uniquely(1p)
solvable linear program. Present the optimal solution.

Question 2(3p)

(finiteness of the simplex algorithm)

Establish the following statement: “If all of the basic feasible solutions are non-
degenerate, then the simplex algorithm terminates after a finite number of iter-
ations.”

Further, if there exists an optimal solution to the problem, establish that the last
iterate is an optimal one.
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Question 3

(LP duality)

Consider the linear integer program

z∗IP := min
x

cTx,

subject to Ax ≤ b,
Cx ≤ d,
x ∈ {0, 1}n.

(1)

Assume that problem (1) is feasible. Let
{
x | Cx ≤ d, x ∈ {0, 1}n

}
=

{x1, . . . ,xN}. Consider the Lagrange dual problem

z∗LD := max
µ

q(µ),

subject to µ ≥ 0,

where
q(µ) := min

x
cTx+ µT(Ax− b),

subject to Cx ≤ d,
x ∈ {0, 1}n.

a) Show that z∗LD is the optimal objective value of the following problem(1p)

max
y,µ

y

subject to cTxi + µT(Axi − b) ≥ y, ∀i = 1, . . . , N

y ∈ R, µ ≥ 0

(2)

b) Show that problem (2) and the following problem have the same optimal(1p)
objective value

min
x

cTx

subject to Ax ≤ b

x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

})
c) Let z∗LP denote the optimal objective value of the LP relaxation of (1), with(1p)

the integrality constraint x ∈ {0, 1}n removed. Show that z∗LP ≤ z∗LD ≤ z∗IP .
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Question 4(3p)

(modelling)

We consider a stepped cantilever beam, which consists of five segments, as shown
in Figure 1. Each segment has a rectangular cross-section with width bi and
height hi to be designed. We assume that each section of the cantilever has the
same length l. A vertical load P is applied at a fixed distance L from the support.
This load causes the beam to deflect, and induces stress in each segment of the
beam with Young’s modulus E. Formulate an optimization model to minimize
the volume of the beam, subject to constraints on bending stress in all five steps
of the beam, to be less than an allowable stress σmax; the displacement constraint
on the tip deflection to be less than the allowable deflection δmax, and a specified
aspect ration amax to be maintained between the height and width of beam cross
sections.
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Figure 1: Stepped cantilever beam

Aid: The maximum bending stress at each segment of the beam is

σi =
6PDi

bih2i
,

where Di is the maximum distance from the end load. The end deflection can be
calculated using Castigliano’s second theorem, which states that

δ =
∂U

∂P
,

where δ is the deflection of the beam, U is the energy stored in the beam due to
the applied force P . The energy stored in a cantilever beam is given by

U =

∫ L

0

P 2x2

2EI
dx,

where I is the area moment of inertia. The moment of inertia of a beam segment
with a rectangular cross-section is

Ii =
bih

3
i

12
.
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Question 5

(true or false)

The below three individual claims should be assessed individually. Are they true
or false, or is it impossible to say? For each of the three statements, provide an
answer, together with a short—but complete— motivation.

a) Suppose we consider minimizing a function f ∈ C2 over Rn. Claim: all(1p)
its stationary points have a positive semi-definite Hessian (i.e., matrix of
second-order partial derivatives).

b) Consider the minimization of a continuous function f : Rn → < over con-(1p)
straints of the form gi(x) ≤ 0, i = 1, 2, . . . ,m, defined by the functions
gi : Rn → <. Derive the Lagrangian dual problem for this problem. Claim:
the Lagrangian dual problem is a convex one.

c) Claim: In an optimization problem, a global optimum cannot be a local(1p)
one.

Question 6(3p)

(optimality conditions)

Prove that x∗ = (1, 1/2,−1)T is optimal for the optimization problem

minimize z = (1/2)xTPx+ qTx+ r,

subject to − 1 ≤ xi ≤ 1, i = 1, 2, 3,

where

P =

 13 12 −2
12 17 6
−2 6 12

 , q =

 −22.0
−14.5
13.0

 , r = 1.
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Question 7(3p)

(the basis of the SQP algorithm)

Consider the problem to minimize a function f ∈ C2 over a set of equality
constraints of the form hj(x) = 0, j = 1, 2, . . . , `, where all functions hj also are
in C2. Derive and motivate the subproblem of this algorithm.

Hint: utilize the standard optimality conditions for the original problem.
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form by introducing slack variables(2p)
s1 and s2. Consider the following linear program:

minimize − 5x1 − 4x2

subject to x1 + s1 = 7,

x1 − x2 + s2 = 8,

x1, x2, s1, s2 ≥ 0.

The starting basis is (s1, s2)
T. The reduced costs for the non-basic variables

x1 and x2 are c̃N = (−5,−4)T, meaning that x1 enters the basis. From the
minimum ratio test, we get that s1 leaves the basis.

Updating the basis we now have (x1, s2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (5,−4)T, meaning that x2 enters basis.
From the minimum ratio test we get that B−1Nx2 = (0,−2)T ≤ 0, mean-
ing that the problem is unbounded. The direction of unboundness is p =
(x1, x2, s1, s2) = (0, 1, 0, 2)T and z →∞ along the half-line l(µ) = (7, 0, 0, 8)T

+µ(0, 1, 0, 2)T, µ ≥ 0.

b) For example −x1 + x2 = 0 can be added to get a uniquely solvable linear(1p)
program. The optimal solution is then x∗ = (7, 7, 0, 0)T and z∗ = 63.

Question 2(3p)

(finiteness of the simplex algorithm)

Theorem 9.11 establishes the finite termination of the simplex method. The
termination criterion is equivalent to the optimality conditions for the LP.

Question 3

(LP duality)

a) Since q(µ) = min
i={1,... ,N}

cTxi +µT(Axi− b), the dual (maximization) prob-(1p)
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lem can be written as

max
µ

min
i∈{1,... ,N}

cTxi + µT(Axi − b)

subject to µ ≥ 0

This is equivalent to (2) in the problem statement.

b) The LP dual of (2) in the problem statement is(1p)

min
ν

N∑
i=1

νi(c
Txi)

subject to
N∑
i=1

νi(Ax
i − b) ≤ 0

N∑
i=1

νi = 1, ν ≥ 0

This problem is equivalent to

min
x

cTx

subject to Ax ≤ b

x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

}) (a)

because x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

})
if and only if x =

N∑
i=1

νix
i

for some ν ≥ 0,
N∑
i=1

νi = 1. Problem (2) in the statement is feasible

(e.g., µ = 0 and y = mini c
Txi). In addition, the feasibility of (1) in the

problem statement (i.e., the original integer program) implies that the dual
of (2) in the problem statement is feasible. Hence, linear programming
strong duality implies that the optimal objective values of (a) and (2) in
the problem statement are the same.

c) If x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

})
then x satisfies Cx ≤ d. Hence,(1p)

the feasible set of (a) is included in the feasible set of the LP relaxation of
(1) in the problem statement. Hence, z∗LP ≤ z∗LD. Finally, the inequality
z∗LD ≤ z∗IP is due to weak duality.
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Question 4(3p)

(modelling)

The decision variables are:

bi, i = 1, . . . , 5 width of segment i

hi, i = 1, . . . , 5 height of segment i

Model

minimize l
5∑

i=1

bihi,

subject to
6Pl

b5h25
≤ σmax,

6P (2l)

b4h24
≤ σmax,

6P (3l)

b3h23
≤ σmax,

6P (4l)

b2h22
≤ σmax,

6P (5l)

b1h21
≤ σmax,

P l3

E
(

244

b1h31
+

148

b2h32
+

76

b3h33
+

28

b4h34
+

4

b5h35
) ≤ δmax,

hi
bi
≤ amax, i = 1, . . . , 5,

hi ≥ 0, bi ≥ 0, i = 1, . . . , 5.

Question 5

(true or false)

a) False: at a stationary point the Hessian may have a negative eigenvalue,(1p)
corresponding to an eigenvector p, resulting in pT∇2f(x)p < 0. This vector
hence is a descent direction.

b) True: this is Theorem 6.4.(1p)
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c) False: a global optimum is - by definition - also a local one.(1p)

Question 6(3p)

(optimality conditions)

The feasible set is nonempty and convex (three-dimensional box), z is C1 on the
feasible set and convex since its hessian P is positive semidefinite (P is symmetric
and the upper left 1-by-1 corner of P, 2-by-2 corner of P and P itself have positive
determinants. Then Sylvester’s criteria establishes the positive definiteness of
P. Eigenvalues of P can be found approximately, e.g. by bisection, instead to
establish the positive definiteness of P.).

Now we need to verify variational inequality to establish the global optimality of
x∗. The gradient of the objective function at x∗ is

∇z(x∗) = (−1, 0, 2)T.

Therefore the variational inequality is that

∇z(x∗)T(y − x) = −1(y1 − 1) + 2(y3 + 1) ≥ 0

for all y satisfying −1 ≥ yi ≥ 1, which is clearly true. So x∗ is a global optimum
of the problem considered (Theorem 4.23).

Question 7(3p)

(the basis of the SQP algorithm)

See equation (13.25) in the course book: the subproblem is equivalent to a second-
order approximation of the KKT conditions of the original problem.


