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Question 1

(the simplex method)

Consider the following linear program:

maximize z = 3x1+5x2,

subject to 2 x2 ≤ 12,

3x1+ 2x2 ≤ 18.

x1 ≥ 0,

x2 ≥ 0.

a) Solve the problem using phase I and phase II of the simplex method.(2p)
Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad− bc

(

d −b
−c a

)

.

b) Without solving the dual to the problem above, motivate clearly whether(1p)
there are no optimal dual solutions, a unique optimal dual solution (if so,
present it) or multiple optimal dual solutions (if so, present at least two of
them).

Question 2

(the KKT conditions)

Consider the problem to find

f ∗ := infimum
x

f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,

where f : Rn → R and gi : Rn → R, i = 1, 2, . . . , m, are given differentiable
functions.

a) State the KKT conditions regarding locally optimal solutions to this prob-(1p)
lem.
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b) Assume that there are two locally optimal solutions, x
1 and x

2, to the(1p)
problem at hand. Suppose that the feasible set at x

1 satisfies the linear
independence constraint qualification (LICQ). Does the vector x

1 satisfy
the KKT conditions? Does the vector x2 satisfy the KKT conditions?

c) Assume instead that there are two vectors, x1 and x
2, both satisfying the(1p)

KKT conditions. Assume also that these are the only KKT points. Suppose
that the feasible set, at x

1, satisfies the linear independence constraint
qualification (LICQ). Further, assume that there exists at least one locally
optimal solution to the given problem. In terms of local or global optimality,
what can be said about the vectors x1 and x

2?

Question 3(3p)

(Lagrangian duality)

Consider the optimization problem

minimize
x1,x2

−x1 − 2x2

subject to x2
1
+ x2

2
≤ 1,

x1 + 0.5x2 ≤ 1.

Write down the dual function and the corresponding Lagrangian dual problem.
Can we say something about the differentiability of the dual function and the
convexity of the dual problem? What is the duality gap (explain your answer)?
Find the optimal primal and dual solutions, if they exist.

Question 4(3p)

(modelling)

You are responsible for the planning of a soccer tournament where all 14 teams
in the Swedish national league will participate. The teams shall be put into two
groups of 7 each, in which all teams will play each other once. The winners of the
two groups will then play a final. The decision to make is which teams will play
in which group. The objective is to minimize the total traveling distance for the
matches in the two groups, not including the final match. The distances between
the home towns of two teams i and j are given by the constants dij(= dji),
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i, j ∈ {1, ..., 14}. The constants pi, i ∈ {1, ..., 14}, represent the number of points
team i took in the national league last year. Assume that the teams are sorted
so that the team with the highest point is represented by i = 1, the team with
second highest point by i = 2, and so on. You are not allowed to put the two
teams with the highest pi:s (team 1 and team 2) in the same group. Neither
are you allowed to arrange the groups so that the difference between the sum of
points of the teams in one group compared to the sum of points of the teams
in the other group exceeds 20% of the total number of points. All games are
played at the home ground of one of the two participating teams; which one is
not important since dij = dji.

Your task is to model this problem as an integer program. All functions defined
have to be differentiable and explicit!

Question 5

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer together with a short but complete motivation.

a) Claim: Suppose that a function f : Rn → R is minimized over a non-empty(1p)
and bounded polyhedral set. Then there exists an optimal solution to the
problem.

b) Claim: Suppose that you have solved an LP problem, and that you would(1p)
like to easily find an optimal solution also to the integer version of the
problem—where all variables are required to be integral. Then there is a
simple procedure by which rounding each of the variable values individually,
either up or down—you may identify such an optimal solution.

c) Claim: The Phase-I problem in the simplex method always has an optimal(1p)
solution.

Question 6(3p)

(global convergence of a penalty method)

Consider a nonlinear optimization problem with the objective of minimizing a dif-
ferentiable function f over a set S specified by constraints of the form gi(x) ≤ 0,
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i = 1, . . . , m, where each function gi is in C
1. Define the classic exterior penalty

method using a penalty function ψ ∈ C1. Introduce the necessary assumptions
on ψ, such that the penalty algorithm is well-defined, and describe the suffi-
cient conditions on the sequence of vectors generated such that a limit point is
stationary.

Question 7

(the KKT conditions)

Consider the problem to

minimize x2
1
+ x2

2
+ x2

3
+ x2

4

subject to x1 + x2 + x3 + x4 = 1
x4 ≤ A.

a) Write down the KKT conditions and find the optimal solution of the prob-(2p)
lem above for all values of the parameter A ∈ R.

b) Plot the graph of the objective function as a function of the parameter A.(1p)
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = − 3 x1 − 5x2

subject to 2x2 + s1 = 12,

3 x1 + 2x2 + s2 = 18,

x1, x2, s1, s2 ≥ 0.

We start directly with phase II at the origin. The starting basis is (s1, s2)
T.

Calculating the reduced costs for the non-basic variables x1, x2 we obtain
c̃N = (−3,−5)T, meaning that x2 enters the basis. From the minimum
ratio test, we get that s1 leaves the basis.

Updating the basis we now have (x2, s2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (−12, 5/2)T, meaning that x1 enters the
basis. From the minimum ratio test we get that s2 leaves the basis.

Updating the basis we now have (x1, x2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (3/2, 2)T, meaning that the current basis is
optimal. The optimal solution is thus

x∗ = (x1, x2, s1, s2)
T = (2, 6, 0, 0)T,

with optimal objective value f ∗ = 36.

b) Since there is an optimal solution to the problem, Strong duality guarantees(1p)
the existence of a dual optimal solution. The dual optimal solution is
y∗T = cTBB

−1 = (−3/2,−1). The optimal basis is not degenerate. The
optimal solution is thus unique.

Question 2

(the KKT conditions)

a) See the Book, system (5.9).(1p)

b) The vector x1 satisfies the KKT conditions (5.9).(1p)
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c) Nothing. (Under the conditions given, there may be optimal solutions that(1p)
do not satisfy the KKT conditions.)

Question 3(3p)

(Lagrangian duality)

The Lagrange function is

L(x, µ) = −x1 − 2x2 + µ1(x
2
1 + x2

2 − 1) + µ2(x1 + 0.5x2 − 1)

= µ1x
2
1 + (µ2 − 1)x1

︸ ︷︷ ︸

q1(x1)

+µ1x
2
2 + (0.5µ2 − 2)x2

︸ ︷︷ ︸

q2(x2)

−µ1 − µ2.

When µ1 < 0, L(x, µ) is strictly concave with respect to x which makes minx1
q1(x1)

and minx2
q2(x2) unbounded from below. Similarly, when µ1 = 0, L(x, µ) is linear

and at least one of minx1
q1(x1) and minx2

q2(x2) is unbounded from below. Only
when µ1 > 0 is L(x, µ) strictly convex with respect to x, and minx L(x, µ) is
finite. In this case, the minimizers of q1 and q2 are, respectively,

x1(µ) =
1− µ2

2µ1

, x2(µ) =
2− 0.5µ2

2µ1

. (1)

Consequently, the dual function is

q(µ) =







− 1
4µ1

((1− µ2)
2 + (2− 0.5µ2)

2)− µ1 − µ2, when µ1 > 0

−∞, when µ1 ≤ 0
.

The dual problem is
minimize q(µ)

subject to µ1 > 0
.

The dual function q is differentiable as expressed. The dual problem is always
convex.

Since the primal problem is convex and the Slater constraint qualifications hold,
strong duality holds. Hence, the duality gap is zero and the optimal dual solution
is attained (which is the same as the Lagrangian multiplier).

There are multiple ways to obtain the optimal primal and dual solutions. An
approach is as follows: By graphically inspecting the primal problem, it can be
seen that (1, 0)T is the optimal primal solution. Then, by Theorem 6.9 in the
text, if x⋆ = (1, 0)T and µ⋆ = (µ⋆

1, µ
⋆
2)

T are the optimal primal and dual pair,
they must satisfy (1). This implies that µ⋆

1 = −3
2
and µ⋆

2 = 4.
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Question 4(3p)

(modelling)

Introduce the binary variables

xi =







1 if team i is in group 1

0 otherwise
, i = 1, . . . , 14.

The objective is to minimize the function

13∑

i=1

14∑

j=i+1

dij(xixj + (1− xi)(1− xj)).

The constraints are

14∑

i=1
xi = 7

x1 + x2 = 1

14∑

i=1
xipi =

14∑

i=1
(1− xi)pi + 0.2

14∑

i=1
pi

14∑

i=1
(1− xi)pi =

14∑

i=1
xipi + 0.2

14∑

i=1
pi

xi ∈ {0, 1}, i = 1, . . . , 14

The first constraint makes sure that there are 7 teams in each group. The second
constraint ensures that the two best teams are not in the same group. The
third and the fourth constraints ensure that the groups are arranged so that the
difference between the sum of points in the two groups are not bigger than 20%
of the total points.

Question 5

(true or false)

a) False – f may be discontinuous, for example.(1p)

b) False – there may be no rounding that is even feasible.(1p)



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 4

c) True – the linear program describing the Phase I problem is a linear program(1p)
with an objective function that is bounded from below by zero. Since the
objective value is bounded the extreme point with the lowest objective value
is optimal.

Question 6(3p)

(global convergence of a penalty method)

See Theorem 13.4.

Question 7

(the KKT conditions)

a) The KKT conditions are(2p)

∇f(x) + λ∇h(x) + µ∇g(x) =








2x1 + λ
2x2 + λ
2x3 + λ

2x4 + λ+ µ








= 0, (1)

x1 + x2 + x3 + x4 = 1, (2)

x4 ≤ A, (3)

µ ≥ 0, (4)

µ(x4 − A) = 0, (5)

giving that x1 = x2 = x3 = −λ/2 and x4 = (−λ − µ)/2. From (1) we
then get that λ = (−2 − µ)/4 and thus x1 = x2 = x3 = 1/4 + µ/8 and
x4 = 1/4− 3µ/8.

From (2) we get that 3µ/8 ≥ 1/4 − A; we treat the following three cases
individually.

1. Assume that A > 1/4, implying that µ ≥ 0, x1 = x2 = x3 ≥ 1/4 and
x4 = 1− (x1 + x2 + x3) ≤ 1/4. From (4) it follows that µ = 0 and the
optimal solution hence is x1 = x2 = x3 = x4 = 1/4.

2. A = 1/4 leads to the same optimal solution as the case above.

3. Assume that A ≤ 1/4. Let x4 < A; then µ = 0 and x4 = 1/4 > A.
Therefore, x4 = A and x1 = x2 = x3 = 1/3(1 − A). Then, the
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original problem reduces to the minimization of 1/3(1 − A2) + A2 =
1/3(1− 2A+4A2) which is always ≥ 1/4 and 1/3(1−A2) +A2 = 1/4
for A = 1/4. The optimal solution is thus x1 = x2 = x3 = x4 = 1/4.

b) The objective function of the problem considered can be written as a func-(1p)
tion of the parameter A as

f(A) =







1
4

if A ≥ 1/4,
1
3
(1− 2A+ 4A2) otherwise.


