
Chalmers/Gothenburg University
Mathematical Sciences

EXAM

TMA947/MMG621
OPTIMIZATION, BASIC COURSE

Date: 16–04–05

Time: House V, morning, 830–1330

Aids: Text memory-less calculator, English–Swedish dictionary

Number of questions: 7; passed on one question requires 2 points of 3.

Questions are not numbered by difficulty.

To pass requires 10 points and three passed questions.

Examiner: Michael Patriksson

Teacher on duty: Johannes Borgqvist (ankn. 5325)

Result announced: 16–04–15

Short answers are also given at the end of

the exam on the notice board for optimization

in the MV building.

Exam instructions

When you answer the questions

Use generally valid theory and methods.

State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.

Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.

Mark on the cover the questions you have answered.

Count the number of sheets you hand in and fill in the number on the cover.



EXAM
TMA947/MMG621 — OPTIMIZATION, BASIC COURSE 1

Question 1

(the simplex method)

Consider the following linear program:

minimize z = 8x1 +3x2 +4x3 +x4,

subject to 2x1 + x2 +3x3 − x4 = 5,

x1 + x2 +2x3 − x4 = 3,

x1, x2, x3, x4 ≥ 0.

Instead of trying to solve the problem using phase I and phase II simplex method
separately, we could solve it in “one-shot”. We consider the modified problem:

minimize z = 8x1 +3x2 +4x3 +x4+My1+My2,

subject to 2x1 + x2 +3x3 −x4+ y1 = 5,

x1 + x2 +2x3 − x4 + y2 = 3,

x1, x2, x3, x4, y1, y2 ≥ 0,

where M is a very large but unspecified number such that a + M > 0 and
a−M < 0 for all real number a.

a) Is the modified problem with M always feasible? Assume that the optimal(1p)
objective value of the modified problem is bounded from below. If we solve
the modified problem, what can we say about the feasibility and optimal
objective value of the original problem, depending on the optimal values of
y1 and y2 in the modified problem? Explain your answers.

b) Solve the modified problem with M using the simplex method, keeping M(2p)
as a unspecified large number. If the problem can be solved to optimality,
write down an optimal solution and objective value of the original problem.

Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad− bc

(

d −b

−c a

)

.
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Question 2

(true or false)

The below three claims should be assessed. Are they true or false, or is it impos-
sible to say? Provide an answer, together with a short motivation.

a) Consider a standard LP problem, for which you apply the Simplex method.(1p)
Suppose also that you have used Phase I of the simplex method and iden-
tified a basic feasible solution.

Claim: Then in Phase II you will be able to identify an optimal solution to
the given problem.

b) Suppose that you are solving an unconstrained optimization problem in(1p)
which you minimize a differentiable function f . Suppose further that at a
given vector x you have generated a descent direction p.

Claim: Then the Armijo rule will provide a positive, finite step length in
which the objective function has a lower value of f : Rn → R than at x.

c) Consider the problem of minimizing a differentiable function f : Rn → R(1p)
over a bounded polyhedral set. Suppose further that we attack this problem
by utilizing the Frank–Wolfe method. Suppose then that we have solved
the linear subproblem of the algorithm.

Claim: Then the linearized objective function has an optimal value in the
linear subproblem that is lower than or equal to the objective value at the
current iteration.

Question 3(3p)

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,
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and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Establish Farkas’ Lemma.

Question 4(3p)

(Frank–Wolfe)

Consider the problem to
maximize

x∈X
f(x). (2)

Assume that X is a polyhedron and f ∈ C1. Let x̄ ∈ X be a point to which
the Frank–Wolfe algorithm converges within a finite number of iterations on the
problem (2). Can we guarantee that x̄ is optimal? If not, which properties can
we guarantee that x̄ has, and which additional requirements are necessary to
guarantee that x̄ is an optimal solution to the problem (2)?

Question 5(3p)

(Lagrangian duality)

Consider the optimization problem

f ∗ := infinum
x

f(x),

subject to g(x) ≤ 0m,

x ∈ X.

Let the Lagrange function be defined as L(x,µ) := f(x)+µTg(x). Assume that
µ∗ is a Lagrange multiplier. That is, µ∗ ≥ 0m and inf

x∈X
L(x,µ∗) = f ∗. Show

that x∗ is optimal if and only if

x∗ ∈ X, g(x∗) ≤ 0m,

x∗ ∈ argmin
x∈X

L(x,µ∗),

µ∗

i gi(x
∗) = 0, i = 1, . . . , m.
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Question 6(3p)

(integer programming modeling) Let a chessboard be a n × n grid with n being
some integer. A queen can move any number of squares horizontally, vertically
or diagonally. See Figure. 1 for an illustration of the possible moves of a queen.

Figure 1: Possible moves of a queen. Source: http://www.chess-poster.com

For this problem, we can place an arbitrary number of queens on the chessboard.
We are asked to find a configuration with the minimum number of queens so that

• each square either is occupied by a queen or can be attacked by a queen,

• no two queens can attack each other.

Formulate the problem to find the desirable configuration as an integer program.

Question 7(3p)

(gradient projection algorithm)

Consider the optimization problem to

minimize
x1,x2

f(x) := 1

2
(x1 − 2)2 + 1

2
(x2 −

3

2
)2,

subject to x ∈ X = {(x1, x2)
T | −1 ≤ xi ≤ 1, i = 1, 2}.
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We consider solving the problem using the gradient projection algorithm. Start
with the initial point x0 = (0, 0)T. Perform one step of the gradient projection
algorithm (so that you obtain the next iterate x1). Use the projection arc and
perform exact minimization line search. That is, xk+1 = ProjX [x

k + αkpk] for
the appropriate search direction pk and step size αk for each iteration k. Is x1

optimal or not? Explain your answer.



Chalmers/Gothenburg University
Mathematical Sciences

EXAM SOLUTION

TMA947/MAN280
OPTIMIZATION, BASIC COURSE

Date: 16–04–05

Examiner: Michael Patriksson



EXAM SOLUTION
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 1

Question 1

(the simplex method)

a) The modified problem is always feasible by construction. For example,(1p)
a feasible solution is xi = 0 for i = 1, 2, 3, 4 and y1 = 5 and y2 = 3.
Assuming that the modified problem has optimal objective value bounded
from below, the modified problem always has finite optimal solution. Let x∗

and y
∗ denote the x-part and y-part of the optimal solution, respectively.

Depending on the value of y∗, two cases are possible:

• At optimality, y∗
1
= y∗

2
= 0. In this case, the original problem is

feasible. In addition, x∗ is an optimal solution to the original problem.
It is obvious that x∗ is feasible to the original problem. If there were
some x̃ feasible to the original problem with an objective value smaller
than that of x∗, then x̃ together with y

∗ = 0 form a better feasible
solution to the modified problem. This contradicts the optimality of
x∗ and y

∗ for the modified problem.

• At optimality, at least one of y∗
1
and y∗

2
is positive. In this case, the

original problem is infeasible. If a vector x̃ were feasible to the original
problem, then x̃ together with y = 0 result in a better feasible solution
of the modified problem than x

∗ with y
∗ (cf. the property of M).

This would contradicts the optimality of x∗ and y
∗ for the modified

problem.

b) We can start the simplex method with y1 and y2 being the basic variables.(2p)
The non-basic variables are x1, x2, x3 and x4.

B =

(

1 0
0 1

)

, B−1 =

(

1 0
0 1

)

, c
T

N =
(

8 3 4 1
)

, c
T

B =
(

M M
)

N =

(

2 1 3 −1
1 1 2 −1

)

, xB = B−1b =

(

5
3

)

.

The reduced costs are

c
T

N − c
T

BB
−1N =

(

8− 3M 3− 2M 4− 5M 1 + 2M
)

.

We choose the third non-basic variable (i.e., x3) to enter the basis, because
it has the most negative reduced cost. The corresponding search direction
for the basic variables are dB = −B−1N3 = (−3,−2)T. The minimum ratio
test indicates that

2 = argmin{
5

3
,
3

2
},
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and hence the second basic variable (i.e., y2) leaves the basis.

At iteration two, we have x3 and y1 being the basic variables. The non-basic
variables are x1, x2, x4 and y2.

B =

(

3 1
2 0

)

, B−1 =

(

0 1

2

1 −3

2

)

, c
T

N =
(

8 3 1 M
)

, c
T

B =
(

4 M
)

N =

(

2 1 −1 0
1 1 −1 1

)

.

The reduced costs are

c
T

N − c
T

BB
−1N =

(

6− M
2

1 + M
2

3− M
2

−2 + 3M
2

)

.

We choose the third non-basic variable (i.e., x4) to enter the basis. The
corresponding search direction for the basic variables are dB = −B−1N3 =
(1
2
,−1

2
)T. Therefore, the second basic variable (i.e., y1) leaves the basis.

At iteration three, we have basic variables being x3 and x4. The non-basic
variables are x1, x2, y1 and y2.

B =

(

3 −1
2 −1

)

, B−1 =

(

1 −1
2 −3

)

, c
T

N =
(

8 3 M M
)

, c
T

B =
(

4 1
)

,

N =

(

2 1 1 0
1 1 0 1

)

, xB = B−1b =

(

2
1

)

.

The reduced costs are

c
T

N − c
T

BB
−1N =

(

3 4 M − 6 M + 7
)

.

The reduced costs are all nonnegative. The simplex method terminates
with optimal solution

x∗ = (0, 0, 2, 1)T, y
∗ = (0, 0), z∗ = 9

As explained in part a), x∗ is also an optimal solution to the original problem
with objective value 9.

Question 2

(true or false)

a) Impossible to say, since the original problem may lack optimal solutions.(1p)
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b) True—see Exercise 11.1.(1p)

c) Impossible to say, since the function f may not be convex.(1p)

Question 3(3p)

(optimality conditions)

This is Theorem 10.10.

Question 4(3p)

(Frank–Wolfe)

We can only guarantee that the point obtained is stationary. If f however is
concave, then we establish that the point obtained is optimal.

Question 5(3p)

(Lagrangian duality)

This is Theorem 6.8.

Question 6(3p)

(integer programming modeling)

A suggested integer programming formulation is as follows: each square is la-
beled with an i nteger index (e.g., 1, . . . , n2). For each square i, we define the
neighborhood Ni to be the set of all indices of squares that can be attacked if a
queen is placed at square i. For each i, we define a 0-1 binary decision variable
xi ∈ {0, 1} such that a queen is placed at square i if and only if xi = 1. Then,
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an integer program modeling t he desired queen configuration problem is

minimize
x

n2
∑

i=1

xi

subject to xi +
∑

j∈Ni

xj ≥ 1, i = 1, . . . , n2

(n2 − 1)xi +
∑

j∈Ni

xj ≤ n2 − 1, i = 1, . . . , n2

xi ∈ {0, 1}, i = 1, . . . , n2.

In the model above, the first constraint specifies that for each square i either
there is a queen or the square can be attacked by a queen in the neighborhood
Ni. The second con straint specifies that if a queen is placed at square i, then
no queen can be placed at a ny square in the neighborhood Ni (we can replace
n2−1 by any constant larger than tha t). The two constraints model exactly the
conditions required by the queen configuration pr oblem.

Question 7(3p)

(gradient projection algorithm)

At x
0 = (0, 0)T, the objective gradient vector is ∇f(x0) = (x1 − 2, x2 −

3

2
)T =

(−2,−3

2
)T. Hence, the search direction is p

0 = −∇f(x0) = (2, 3
2
)T. Because

of the form of the feasible set X (i.e., box constraints), projection on X can be
expressed analytically. The projection arc is of the form (for 0 ≤ α0 ≤ 1):

ProjX [x
0 + α0

p
0] =

(

min{1, 0 + 2α0}
min{1, 0 + 3

2
α0}

)

.

Hence, the objective function (to be minimized) for exact line search is

f 0(α0) := 1

2
(min{1, 2α0} − 2)2 + 1

2
(min{1, 3

2
α0} − 3

2
)2

=































1

2

(

4(α0 − 1)2 + 9

4
(α0 − 1)2

)

0 ≤ α0 ≤ 1

2

1

2

(

1 + 9

4
(α0 − 1)2

)

1

2
≤ α0 ≤ 2

3

5

8

2

3
≤ α0 ≤ 1

.

Minimizing f 0 with 0 ≤ α0 ≤ 1 yields the minimizing α0 to be greater than or
equal to 2/3. Hence, the next iterate is

x
1 = ProjX [x

0 + α0
p
0] =

(

1
1

)

.
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It is claimed that x1 is an optimal solution. First, note that the objective gradient
a t x

1 = (1, 1)T is ∇f(x1) = (x1 − 2, x2 −
3

2
)T = (−1,−1

2
)T. At x

1 the active
constraints are x1 ≤ 1 and x2 ≤ 1 with constraint function gradients being
(1, 0)T and (0, 1)T, respectively. As a result, −∇f(x1) is in the cone of the active
constraint gradients. This implies that x

1 is a KKT point. In addition, the
optimization problem is convex with affine constraints. Hence, the KKT point
x
1 is indeed an optimal solution.


