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Question 1

(the simplex method)

Consider the following linear program:

minimize z = 2x1 − x2,

subject to x1 + x2 ≥ 1,

x1 − 2x2 ≤ 1.

x1 ≥ 0,

x2 ≥ 0.

a) Solve the problem using phase I and phase II of the simplex method.(2p)
Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

.

b) Does its LP dual have an optimal solution?(1p)

Question 2(3p)

(linear inequalities)

Consider the system of linear inequalities

Ax ≤ b,

for which we assume there is at least one solution. Let d be a given scalar.
Use linear programming duality to establish the equivalence of the following two
statements:

(a) Every solution x to the system Ax ≤ b satisfies cTx ≤ d.

(b) There exists some vector y ≥ 0 such that ATy = c and bTy ≤ d.
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Question 3(3p)

(the Frank–Wolfe algorithm)

Consider the problem to

minimize
x1,x2

(

x1 x2

)

(

6 2
2 9

)(

x1

x2

)

−
(

52 34
)

(

x1

x2

)

,

subject to x1 + 2x2 ≤ 4.

x1 + x2 ≤ 3.

2x1 ≤ 5.

x1 ≥ 0.

x2 ≥ 0.

(1)

Solve the problem (1) using the Frank–Wolfe algorithm. Start with the initial
guess x(0) = (x1, x2)

T = (2.5, 0)T. The line search should be performed as an
exact minimization. If necessary, you are allowed to carry out the calculations
approximately with two digits of accuracy.

Hint: You may find it helpful to analyze the problem and the algorithm progress
graphically, but this must be augmented with a rigorous analysis.

Question 4(3p)

(modelling)

A small municipality is forced to close one or several schools. Out of ten existing
schools, at most three schools can be closed. The annual cost to keep school i

open is ci kr. School i can educate a maximum of ki students. The municipality
is divided into J home areas and there is a requirement that all students in an
area belong to the same school. There are bj students in area j and the average
distance from area j to school i is dij km. The estimated annual cost for student
travels is set to m kr per km and student.

Formulate a linear integer program to decide on which schools to keep and which
ones to close, such that we minimize the total cost for schools and travels and
fulfill the above listed requirements.
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Question 5

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer together with a short but complete motivation.

a) Claim: A strictly convex function is differentiable.(1p)

b) Claim: For a constrained minimization problem with explicit constraints,(1p)
any Lagrangian dual formulation provides an upper bound on the optimal
value of the original problem.

c) Claim: In linear programming, at termination of the Simplex method the(1p)
optimal values of the dual variables are equal to the Lagrange multipliers
of the linear constraints in the (primal) linear program.

Question 6

(interior penalty methods)

Consider the problem to

minimize f(x) := (x1 − 2)4 + (x1 − 2x2)
2,

subject to g(x) := x2
1 − x2 ≤ 0.

We attack this problem with an interior penalty (barrier) method, using the
barrier function φ(s) = −s−1. The penalty problem is to

minimize
x∈Rn

f(x) + νχ̂S(x), (1)

where χ̂S(x) = φ(g(x)), for a sequence of positive, decreasing values of the
penalty parameter ν.

We repeat a general convergence result for the interior penalty method below.

Theorem 1 (convergence of an interior point algorithm) Let the objective func-
tion f : R

n → R and the functions gi, i = 1, . . . , m, defining the inequality
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constraints be in C1(Rn). Further assume that the barrier function φ : R− → R+

is in C1 and that φ′(s) ≥ 0 for all s < 0.

Consider a sequence {xk} of points that are stationary for the sequence of prob-
lems (1) with ν = νk, for some positive sequence of penalty parameters {νk}
converging to 0. Assume that limk→+∞ xk = x̂, and that LICQ holds at x̂.
Then, x̂ is a KKT point of the problem at hand.

In other words,

xk stationary in (1)
xk → x̂ as k → +∞

LICQ holds at x̂







=⇒ x̂ stationary in our problem.

a) Does the above theorem apply to the problem at hand and the selection of(1p)
the penalty function?

b) Implementing the above-mentioned procedure, the first value of the penalty(2p)
parameter was set to ν0 = 10, which is then divided by ten in each iteration,
and the initial problem (1) was solved from the strictly feasible point (0, 1)T.
The algorithm terminated after six iterations with the following results:
x6 ≈ (0.94389, 0.89635)T, and the multiplier estimate [given by ν6φ

′(g(x6))]
µ̂6 ≈ 3.385. Confirm that the vector x6 is close to being a KKT point. Are
the KKT point(s) globally optimal? Why/Why not?

Question 7

(the KKT conditions)

Consider the problem to

minimize x1x2 + x2x3 + x1x3

subject to x1 + x2 + x3 = 3.

a) Write down the KKT conditions and find all KKT points.(2p)

b) Does the problem have an optimal solution? Motivate!(1p)
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = 2x1 − x2,

subject to x1 + x2 − s1 = 1,

x1 − 2x2 + s2 = 1,

x1, x2, s1, s2 ≥ 0.

By introducing an artificial variable a, we get the Phase I problem to

minimize w = a,

subject to x1 − 2x2 + s2 = 1,

x1 + x2 − s1 + a = 1,

x1, x2, s1, s2, a ≥ 0.

The starting basis is (s2, a)T. Calculating the reduced costs for the non-
basic variables x1, x2, and s1 we obtain c̃N = (−1,−1, 1)T, meaning that
x1 enters the basis. From the minimum ratio test, we get that a leaves the
basis.

Updating the basis we now have (s2, x1)
T in the basis meaning that w∗ = 0

and the basis found is corresponding to a basic feasible solution of the
original problem in the standard form, i.e., the Phase II problem.

Calculating the reduced costs, we obtain c̃N = (−3, 2)T. meaning that x2

enters the basis. From the minimum ratio test we get that x1 leaves the
basis.

Updating the basis we now have (s2, x2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (3,−1)T, meaning that s1 enters basis.
From the minimum ratio test we get that B−1Ns1

= (−1, 0)T ≤ 0, meaning
that the problem is unbounded.

b) The primal problem is unbounded, implying that cTx∗ = −∞. From weak(1p)
duality we have that bTy ≤ cTx∗ for all feasible y, meaning that the dual
problem is infeasible.
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Question 2(3p)

(linear inequalities)

Consider the linear program to

minimize
x

−cTx,

subject to Ax ≤ b,
(1)

and its standard form equivalence

minimize
x+,x−,s

−cTx+ + cTx−,

subject to Ax+ − Ax− + s = b,

x+ ≥ 0, x− ≥ 0, s ≥ 0.

(2)

The dual of (2) is to

maximize
p

bTp,

subject to ATp ≤ −c,

−ATp ≤ c,

p ≤ 0,

, (3)

and (3) is equivalent to

maximize
y

−bTy,

subject to ATy = c,

y ≥ 0.

(4)

If statement (a) holds, then the objective of (1) and (2) is bounded from below
by −d. Hence, there exists an optimal solution to the dual of (2), which is
(3). Consequently, by strong duality (cf. Theorem 10.6 in the text) the optimal
objective values of (3) and (4) are equal to that of (2), which is bounded from
below by −d. This implies that, for (4), there exists a vector y ≥ 0 such that
ATy = c and −bTy ≥ −d (i.e., bTy ≤ d). This statement is the same as (b).

Conversely, if (b) holds then (3) has at least one feasible solution with an objective
value bounded from below by −d. Hence, by weak duality (cf. Theorem 10.4 in
the text) every x feasible to (1) (i.e., Ax ≤ b) must satisfy −cTx ≥ −d. This
implies statement (a).
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Question 3(3p)

(the Frank–Wolfe algorithm)

Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick
black boundary lines) and some contours of the objective function. Th e optimal
solution is denoted by x⋆ (i.e., the red dot in the figure). x(k) for k = 0, 1, 2
denotes iterates visited by the Frank-Wolfe algorithm.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x(0)

x(1)

x⋆ = x(2)

x1

x
2

Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a polyhe
dron with boundary denoted by the thick black lines. Some contours of the object
ive function are shown. The optimal solution x⋆ = (2.5, 0.5). The dotted lines
show the Frank-Wolfe iterations, with x(k), k = 0, 1, 2 denoting the i terates.

The details of the algorithm steps are as follows. Let X denote the feasible s
et. Let f(x1, x2) denote the objective function. For any given iterate x(k) =

(x
(k)
1 , x

(k)
2 ). The objective function gradient vector is

∇f(x
(k)
1 , x

(k)
2 ) =

[

12 4
4 18

] [

x
(k)
1

x
(k)
2

]

−

[

52
34

]

.

The search direction problem is

minimize
x∈X

∇f(x
(k)
1 , x

(k)
2 )

T
x. (1)
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If min
x∈X

∇f(x
(k)
1 , x

(k)
2 )

T
x ≥ ∇f(x

(k)
1 , x

(k)
2 )

T
x(k), then by optimality conditions (for

minimi zing a convex function over a convex feasible set) x(k) is optimal. Otherwi
se, let y(k) denote an optimal solution to the search direction problem. Th en the
exact minimization line search problem can be expressed into

minimize
α∈[0,1]

f(αx(k) + (1 − α)y(k)) ⇐⇒ minimize
α∈[0,1]

gα2 + hα,

where

g =
(

x(k) − y(k)
)T
[

6 2
2 9

]

(

x(k) − y(k)
)

h =
(

x(k) − y(k)
)T
([

12 4
4 18

]

y(k) −

[

52
34

])

.

(2)

The minimizing value of α, denoted by α(k), can be found using the optimality
condition to be

α(k) =



















0 if − h
2g

< 0

− h
2g

if 0 ≤ − h
2g

≤ 1

1 if − h
2g

> 1

. (3)

The iterate update formula is

x(k+1) = α(k)x(k) + (1 − α(k))y(k). (4)

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with
x(0) = (2.5, 0), the objective function gradient is

∇f(x
(0)
1 , x

(0)
2 ) =

[

12 4
4 18

] [

x
(0)
1

x
(0)
2

]

−

[

52
34

]

=

[

12 4
4 18

] [

2.5
0

]

−

[

52
34

]

=

[

−22
−24

]

.

To solve the search direction problem in (1), it is sufficient to restrict the feasible
set to the set of all extreme points. That is,

minimize
x∈V

∇f(x
(0)
1 , x

(0)
2 )

T
x, (5)

where V is the set of all extreme points defined as

V =
{

(0, 0), (0, 2), (2, 1), (2.5, 0.5), (2.5, 0)
}

.

This amounts to finding the minimum among five numbers: 0, −48, −68, −67,
−55. The result is that y(0) = (2, 1). Applying the formula in (??) yields

g =

([

2.5
0

]

−

[

2
1

])T [

6 2
2 9

]([

2.5
0

]

−

[

2
1

])

= 8.5

h =

([

2.5
0

]

−

[

2
1

])T ([

12 4
4 18

] [

2
1

]

−

[

52
34

])

= −4



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 5

According to (3), α(0) = 4
17

. Hence, by (4)

x(1) =
4

17
(
5

2
, 0) + (1 −

4

17
)(2, 1) = (

36

17
,
13

17
) ≈ (2.12, 0.76).

This is shown in Figure 1.

At the next iteration with x(1) = (36
17

, 13
17

), we have

∇f(x
(1)
1 , x

(1)
2 ) =

[

12 4
4 18

] [

x
(1)
1

x
(1)
2

]

−

[

52
34

]

=
1

17

[

−400
−200

]

≈

[

−23.53
−11.76

]

.

Solving (5) amounts to finding the minimum of 0, −4, −10, −11, −10. This leads
to y(1) = (2.5, 0.5). Applying (2) leads to

g = 1275
1156

≈ 1.10

h = 125
34

≈ 3.68.

Thus, according to (3) α(1) = 0, and from (4) x(2) = y(1) = (2.5, 0.5) as shown in
Figure 1.

At the final iteration with x(2) = (2.5, 0.5), we have

∇f(x
(2)
1 , x

(2)
2 ) =

[

−20
−15

]

.

Solving (5) leads to y(2) = x(2) = (2.5, 0.5). Thus, it holds that

min
x∈X

∇f(x
(2)
1 , x

(2)
2 )

T
x ≥ ∇f(x

(2)
1 , x

(2)
2 )

T
x(2).

By optimality conditions, x(2) = (2.5, 0.5) is the optimal solution to our problem.

Question 4(3p)

(modelling)

The decision variables are:

yi = 1, if school i is open, 0 otherwise

xij = 1, if students in area j attend school i, 0 otherwise
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Model

minimize
10
∑

i=1

ciyi + 2m
10
∑

i=1

J
∑

j=1

bjdijxij

subject to
J
∑

j=1

bjxij ≤ kiyi, i = 1, . . . , 10

10
∑

i=1

yi ≥ 7,

10
∑

i=1

xij = 1, j = 1, . . . , J

yi ∈ {0, 1}, i = 1, . . . , 10

xij ∈ {0, 1}, i = 1, . . . , 10

j = 1, . . . , J

The program is linear with integer variables.

Question 5

(true or false)

a) False. A simple example has f(x) = x2 for x ≤ 0, and x3+ | x | for x ≥ 0.(1p)

b) False. It provides a lower bound on the optimal value of the original (primal)(1p)
problem.

c) True. Theorem 10.15 (necessary and sufficient conditions for global optimal-(1p)
ity) shows that an optimal dual solution is a vector of Lagrange multipliers.

Question 6

(interior penalty methods)

a) All functions involved are in C1. The conditions on the penalty function(1p)
are fulfilled, since φ′(s) = 1/s2 ≥ 0 for all s < 0. Further, LICQ holds
everywhere. The answer is yes.
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b) With the given data, it is clear that the only constraint is (almost) ful-(2p)
filled with equality: (x6)

2
1 − (x6)2 ≈ −0.005422 ≈ 0. We set up the KKT

conditions to see whether it is fulfilled approximately. Indeed, we have the
following corresponding to the system ∇f(x6) + µ̂6∇g(x6) = 02:

(

−6.4094265
3.39524

)

+ 3.385

(

1.88778
−1

)

≈

(

−0.01929
0.01024

)

,

and the right-hand side can be considered near-zero. Since µ̂6 ≥ 0 we
approximately fulfill the KKT conditions.

For the last part, we establish that the problem is convex. The feasible set
clearly is convex, since g is a convex function and the constraint is on the
“≤”-form. The Hessian matrix of f is

(

12(x1 − 2)2 + 2 −4
−4 8

)

,

which is positive semidefinite everywhere (in fact, positive definite outside
of the region defined by x1 = 2); hence, f is convex on R

2. We conclude
that our problem is convex, and hence the KKT conditions imply global op-
timality. The vector x6 therefore is an approximate global optimal solution
to our problem.

Question 7

(the KKT conditions)

a) The KKT conditions are(2p)

∇f(x) + λ∇h(x) =







x2 + x3

x1 + x3

x1 + x2





+ λ







1
1
1





 = 0.

There is only one feasible point fulfilling the KKT conditions:

x̄ = (1, 1, 1)T with λ = −2.

b) Since the eigenvalues of the Hessian of the objective function(1p)

∇2f(x) =







0 1 1
1 0 1
1 1 0







are λ1 = λ2 = −1, λ3 = 2 the objective function is not convex, indicat-
ing that the problem is unbounded. The KKT point x̄ is not an optimal
solution.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 8


