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Question 1

(the simplex method)

Consider the following linear program:

maximize z = 2x1 + x2,

subject to −x1 + x2 ≤ 1,

−x1 + 2x2 ≥ −2.

x1, x2 ≥ 0.

a) Solve the problem using phase I and phase II of the simplex method.(2p)
Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

.

b) If an optimal solution exists, then use your calculations to decide whether(1p)
it is unique or not. If the problem is unbounded, then use your calculations
to specify a direction of unboundedness of the objective value.

Question 2(3p)

(consistency of linear systems)

Consider the following system of linear inequalities:

Ax ≤ b.

Suppose that this system has at least one solution. Let d be a given scalar.
Use linear programming duality to establish the equivalence of the following two
statements:

(a) Every solution x to the system Ax ≤ b satisfies cTx ≤ d.

(b) There exists some vector y ≥ 0n such that ATy = c and bT y ≤ d.
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Question 3(3p)

(global optimality conditions)

The following result characterizes every optimal primal and dual solution. It is
however applicable only in the presence of Lagrange multipliers; in other words,
the below system (1) is consistent if and only if there exists a Lagrange multiplier
vector and there is no duality gap.

Theorem 1 (global optimality conditions in the absence of a duality gap) The
vector (x∗, µ∗) is a pair of primal optimal solution and Lagrange multiplier vector
if and only if

µ∗
≥ 0m, (Dual feasibility) (1a)

x∗
∈ arg min

x∈X
L(x, µ∗), (Lagrangian optimality) (1b)

x∗
∈ X, g(x∗) ≤ 0m, (Primal feasibility) (1c)

µ∗

i gi(x
∗) = 0, i = 1, . . . , m. (Complementary slackness) (1d)

Establish this theorem.

Question 4(3p)

(modelling)

A company can produce two products, A and B. To produce one unit of product
A takes two hours, while the corresponding time for product B is three hours.
The profit for each unit of product A is 200 kr and for product B 400 kr. There
are 40 hours of production time available. However, by paying a fixed cost of
1200 kr another 8 extra hours of production can be used. If more than 10 units
of product A is produced, then at least five units of product B must be produced.
It is only possible to produce integer number of products.

Formulate a linear integer program (a linear objective function, linear constraints,
and integrality restrictions on the variables) to determine the optimal production
plan to maximize the profit.
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Question 5

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer, together with a short motivation.

a) Consider a convex function f : R
n → R. Suppose that at some vector x(1p)

the directional derivative of f in the direction of a given vector p ∈ R
n is

non-negative.

Claim: The vector x is a minimizer of f over R
n.

b) Consider solving a linear program (call it “P”) through the process of uti-(1p)
lizing “phase I” and “phase II” of the Simplex method. Suppose that the
optimal value in the phase I-problem is zero.

Claim: There exists an optimal solution to the linear program P.

c) Consider the problem of minimizing a differentiable convex function f :(1p)
R

n → R over a bounded polyhedral set. Suppose further that we attack this
problem by utilizing the Frank–Wolfe method. Suppose then that having
solved the linear subproblem of the algorithm we find that the linearized
objective function has an optimal value in the linear subproblem that is
equal to the objective value at the current iteration.

Claim: Then the last iterate of the Frank–Wolfe method is optimal in the
problem.

Question 6(3p)

(nonlinear programming) Consider the problem to

minimize f(x),

subject to x ∈ X,

where f is in C1 and where

X =

{

x ∈ R
n

∣

∣

∣

∣

∣

n
∑

j=1

xj = r; xj ≥ 0, j = 1, . . . , n

}

,

where r > 0. Suppose that x∗ is a local optimum in this problem.
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Show that

x∗

j > 0 =⇒
∂f(x∗)

∂xj

≤
∂f(x∗)

∂xi

, i, j = 1, . . . , n,

that is, that variables with non-zero optimal values have the same (and minimal)
partial derivatives.

Question 7(3p)

(gradient projection algorithm) Solve the following problem, utilizing the gradient
projection method:

minimize
x

f(x) := 3x2

1
− 2x1x2 + 2x2

2
,

subject to 0 ≤ x1 ≤ 2,

−3 ≤ x2 ≤ −1.

Initiate the algorithm at x0 = (1,−2)T, and utilize the Armijo criterion to de-
termine the step length. Apply the gradient projection method for at most three
iterations. When the algorithm terminates, either because of the iteration limit
or a termination criterion being met, can you show whether the final iterate is
indeed an optimal solution for this problem?

The Armijo criterion for step length determination is as follows: let f denote
the objective function, and X denote the feasible set. Accept as step length (for
iteration k) αk = ᾱβi, where i is the first nonnegative integer (starting with
0, 1, . . .) such that

f(ProjX [xk
−ᾱβi

∇f(xk)]) ≤ f(xk)+µ∇f(xk)T
(

ProjX [xk
− ᾱβi

∇f(xk)] − xk
)

,

(1)
where ᾱ = 1, β = 0.5 and µ = 0.2. To clarify, in (1) xk should be interpreted as
the iterate at iteration k, while βi should be interpreted as β to the i-th power.
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = − 2x1 − x2

subject to −x1 + x2 + s1 = 1,

x1 − 2x2 + s2 = 2,

x1, x2, s1, s2 ≥ 0.

In phase I the starting basis is (s1, s2)
T. Calculating the reduced costs for

the non-basic variables x1, x2 we obtain c̃N = (−2,−1)T, meaning that x1

enters the basis. From the minimum ratio test, we get that s2 leaves the
basis.

Updating the basis we now have (s1, x1)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (2,−5)T. meaning that x2 enters the basis.
From the minimum ratio test we get B−1N2 = (−1,−2)T < 0, meaning
that the problem is unbounded.

b) A direction of unboudness is l(µ) = (2, 0, 3, 0)T + µ(2, 1, 1, 0)T, µ ≥ 0.(1p)

Question 2(3p)

(consistency of linear systems)

Consider to linear program to

minimize
x

−cTx,

subject to Ax ≤ b,
(1)

and its standard form equivalent

minimize
x+,x−,s

−cTx+ + cTx−,

subject to Ax+ − Ax− + s = b,

x+ ≥ 0, x− ≥ 0, s ≥ 0.

(2)
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The dual of (2) is to

maximize
p

bTp,

subject to ATp ≤ −c,

−ATp ≤ c,

p ≤ 0,

(3)

and (3) is equivalent to

maximize
y

−bTy,

subject to ATy = c,

y ≥ 0.

(4)

If statement (a) holds, then the optimal objective value of (1) and (2) are bounded
from below by −d. Hence, by there exists an optimal solution to the dual of (2),
which is (3). Consequently, by strong duality (cf. Theorem 10.6) the optimal
objective values of (3) and (4) are equal to that of (2), which is bounded from
below by −d. This implies that, for (4), there exists a vector y ≥ 0 such that
ATy = c and −bTy ≥ −d (i.e., bTy ≤ d). This statement is the same as (b).

Conversely, if (b) holds then (3) has at least one feasible solution with objective
value bounded from below by −d. Hence, by weak duality (cf. Theorem 10.4)
every x feasible in (1) (i.e., Ax ≤ b) must satisfy −cTx ≥ −d. This implies
statement (a).

Question 3(3p)

(global optimality conditions)

This is Theorem 6.8.

Question 4(3p)

(modelling)

The decision variables are:

xA = number of units of product A produced
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xB = number of units of product B produced

y1 = 1, if additional time is used, 0 otherwise

y2 = 1, if more than ten units of product A is produced, 0 otherwise

Based on these definitions, the model is as follows:

maximize 200xA + 400xB − 1200y1

subject to 2xA + 3xB ≤ 40 + 8y1,

100y2 ≥ xA − 10,

xB ≥ 5y2,

xA, xB ≥ 0, integer

y1, y2 ∈ {0, 1}

The program is linear with integer variables.

Question 5

(true or false)

a) False. The directional derivative must be non-negative in all directions p.(1p)

b) False. The problem is feasible but may have an unbounded solution.(1p)

c) True. This is a consequence of Theorem 4.23.(1p)

Question 6(3p)

(nonlinear programming)

Letting µ denote the Lagrange multiplier for the equality constraint, and λ ∈ R
n
+

denote the vector of multipliers for the sign constraints, we obtain the Lagrangian

L(x, µ, λ) := f(x) + µ





n
∑

j=1

xj − r



− λTx.

Consider the optimality condition for xj :

∂L(x, µ, λ)

∂xj

=
∂f(x)

∂xj

− µ − λj = 0, j = 1, . . . , n.
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Further, we have that λ∗

jx
∗

j = 0, by complementarity. If x∗

j > 0 then λ∗

j = 0, and

hence ∂f(x∗)
∂xj

= µ∗ (hence a common partial derivative for all positive variables),

while if x∗

j = 0 then ∂f(x∗)
∂xj

= µ∗ + λ∗

j , which may be larger.

Question 7(3p)

(gradient projection algorithm)

Denote the objective function by f(x1, x2) := 3x2
1 − 2x1x2 + 2x2

2, and the (box)
feasible set by X. Then, ∇f(x) = (6x1 − 2x2,−2x1 + 4x2)

T. At the initial point
x0 = (1,−2)T, the gradient is ∇f(x0) = (10,−10)T. To determine step length
α0, we apply the Armijo criterion supplied. We first try α0 = ᾱ = 1 (as β0 = 1).
Note that

ProjX [x0 −∇f(x0)] = ProjX

[(

1 − 10
−2 + 10

)]

=

(

0
−1

)

ProjX [x0 −∇f(x0)] − x0 =

(

0
−1

)

−

(

1
−2

)

=

(

−1
1

)

f
(

ProjX [xk − ᾱβi∇f(xk)]
)

= 3 · 0 + 2 · 0 − 2 · (−1)2 = 2

f(x0) = 3 · 12 − 2 · 1 · (−2) + 2 · (−2)2 = 15

∇f(x0)T (ProjX [x0 −∇f(x0)] − x0) =
(

10 −10
)

(

−1
1

)

= −20.

Hence, the Armijo criterion is satisfied, as 2 ≤ 15 + 0.2 · (−20) = 11. Thus,
α0 = ᾱ = 1, and iterate x1 = ProjX [x0 −∇f(x0)] = (0,−1)T.

For the next iteration, we have ∇f(x1) = (2,−4)T. Hence,

x1 − α∇f(x1) =

(

0
−1

)

+

(

−2α
4α

)

=

(

−2α
−1 + 4α

)

.

As a result,

ProjX [x1 − α∇f(x1)] =

(

max{0,−2α}
min{−1,−1 + 4α}

)

=

(

0
−1

)

= x1, ∀α > 0,

and hence x1 is a stationary point (KKT point). The gradient projection algo-
rithm terminates because the termination criterion is met. Notice that the fact
that x1 is a stationary point can also be understood graphically, as −∇f(x1) lies
in the cone generated by the normal vectors of the two active constraints (x1 ≥ 0
and x2 ≤ −1).
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Finally, since f is convex (which can be verified by computing the Hessian) and
X is convex, the stationary point x1 is also optimal. This can be established via
Theorem 4.23 together with (4.18), or Theorem 5.49 in the text.


