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When you answer the questions

Use generally valid theory and methods.
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Sort your solutions by the order of the questions.

Mark on the cover the questions you have answered.

Count the number of sheets you hand in and fill in the number on the cover.
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Question 1

(the simplex method)

Consider the following linear program:

minimize z = x1 + αx2 + x3,

subject to 2x2 + x3 ≤ 5,

x1 − x2 + 2x3 ≥ 5,

x1, x2, x3 ≥ 0.

a) Solve the problem for α = −1 using phase I (so that you begin with a(2p)
unit matrix as the first basis) and phase II of the simplex method. If the
problem has an optimal solution, then present the optimal solution in both
the original variables and in the variables used in the standard form. If
the problem is unbounded, then use your calculations to find a direction
of unboundedness in both the original variables and in the variables in the
standard form.
Aid: Utilize the identity

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

.

b) Find the values of α such that the optimal solution from a) is optimal.(1p)

Question 2(3p)

(convexity)

Consider the problem to minimize a convex function f : R
n → R over a non-

empty, closed and convex set S. Suppose further that x
∗ is a locally optimal

solution to this problem. Is it then globally optimal in the problem? Argue in
detail.
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Question 3

(KKT optimality conditions)

Consider the problem to project (according to the standard Euclidean distance)
the vector z = (2, 3/2)T onto the set S specified by the constraints that xj ≥ 0
for j = 1, 2, and that x1 + x2 ≤ 3/2.

a) Describe the appropriate optimization problem to be solved in order to(1p)
find this projection, and establish that it is a convex optimization problem.
(Note: Use the square of the Euclidian distance as objective function.)

b) State the KKT conditions corresponding to a feasible vector x
∗ being sta-(1p)

tionary in the problem in a). Establish whether or not the KKT conditions
are necessary for a local minimum at x

∗, and also whether the KKT con-
ditions are sufficient for a feasible vector x

∗ satisfying the KKT conditions
to be a global minimum of the same problem.

c) Establish whether or not the vector x = (1, 1/2)T is the projection of z(1p)
onto the set S.

Question 4(3p)

(the gradient projection method)

Consider the optimization problem to

minimize x2

1 + x1x2 + 2x2

2 − 10x1 − 4x2,

subject to x1 + x2 ≤ 3,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 2.

Recall that the gradient projection algorithm is a generalization of the steepest
descent method to problems over convex sets. Given a point xk, the next point is
obtained according to xk+1 = ProjX(xk −αk∇f(xk)), where X is the convex set
over which we minimize, αk > 0 is the step length in iteration k, and ProjX(y) =
argmin

x∈X‖x − y‖ denotes the closest point in X to y.
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Start at the point x0 = (2, 1)T and perform two iterations of the gradient projec-
tion algorithm with step lengths α0 = 1

2
and α1 = 1

4
. Note that the special form

of the feasible region X makes the projection very easy! Is the point obtained a
local/global optimum?

Question 5(3p)

(modelling)

You are assigned a number of tiles, each containing a letter from the alphabet.
For any letter α your inventory contains Nα (a nonnegative integer) tiles with the
letter α. Use the tiles to build words from the collection w1, w2, ..., wn. Let oiα be
the number of occurrences of letter α in word wi, i = 1, . . . , n. You receive pi ≥ 0
points for making word wi and an additional bonus bij ≥ 0 points for making
both words wi and wj (i, j = 1, . . . , n). Formulate a linear integer program to
determine your optimal choice of words. You may construct any word at most
once, and use any tile at most once.

Question 6

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer together with a short but complete motivation.

a) Claim: If a function f : R
n → R is strictly convex and differentiable then(1p)

the problem to minimize f over R
n has a unique optimal solution.

b) Claim: If a function f : R
n → R is strictly convex and twice differentiable(1p)

then its Hessian is positive definite everywhere.

c) Claim: If the function f : R
n → R is concave on R

n and c ∈ R, then the(1p)
set {x ∈ R

n | f(x) ≥ c } is convex.

Question 7(3p)

(the Separation Theorem)

The Separation Theorem can be stated as follows.
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Suppose that the set S ⊆ R
n is closed and convex, and that the point y does not

lie in S. Then, there exist a vector π 6= 0n and α ∈ R such that π
T
y > α and

π
T
x ≤ α for all x ∈ S.

Establish the theorem using basic results from the course. If you rely on other
results when performing your proof of the above theorem, then those results must
be stated; they may however be utilized without proof.
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = x1 − x2 + x3

subject to 2x2 + x3 + s1 = 5,

x1 − x2 + 2x3 − s2 = 5,

x1, x2, x3, s1, s2 ≥ 0.

An obvious starting basis is (s1, x1) and we can thus begin directly with
Phase II. Calculating the reduced costs we obtain c̃N = (0,−1, 1)T, meaning
that x3 enters the basis. From the minimum ratio test, we get that x1 leaves
the basis.

Updating the basis we now have (s1, x3) in the basis. Calculating the re-
duced costs, we obtain c̃N = (1

2
,−1

2
, 1

2
)T. meaning that x2 enters the basis.

From the minimum ratio test, we get that the outgoing variable is s1.

Updating the basis we now have (x2, x3) in the basis. Calculating the
reduced costs, we obtain c̃N = (2

5
, 1

5
, 3

5
)T ≥ 0, meaning that the current

basis is optimal. The optimal solution is thus

(x1, x2, x3, s1, s2)
T = (0, 1, 3, 0, 0)T,

which in the original variables means (x1, x2, x3)
T = (0, 1, 3)T with optimal

objective value f ⋆ = 2.

b) Calculating the reduced costs of the problem for the optimal basis of the(1p)
problem from a), we obtain c̃N = (3

5
+ 1

5
α,−1

5
− 2

5
α, 2

5
− 1

5
α)T ≥ 0 meaning

that the the optimal solution from a) remains optimal for −3 ≤ α ≤ −1

2
.

Question 2(3p)

(convexity)

This is Theorem 4.3.
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Question 3

(KKT optimality conditions)

a) With z = (2, 3/2)T, the optimization problem to solve is that to(1p)

minimize
1

2
‖x − z‖2,

subject to x1 + x2 ≤ 3/2,

xj ≥ 0, j = 1, 2.

The objective function is clearly a convex function and the feasible set is
a convex set. Hence, the optimization problem is a convex optimization
problem.

b) The KKT conditions for a feasible vector x
∗ are as follows:(1p)

(

x∗

1

x∗

2

)

−

(

2
3/2

)

+ µ1

(

1
1

)

+ µ2

(

−1
0

)

+ µ3

(

0
−1

)

=

(

0
0

)

,

µ1(x
∗

1 + x∗

2 − 3/2) = 0,

µ2x
∗

1 = 0,

µ3x
∗

3 = 0,

µj ≥ 0, j = 1, 2, 3.

All constraints are affine, so the KKT conditions are necessary for optimal-
ity. Since it is a convex optimization problem, the KKT conditions are also
sufficient for optimality.

c) At x
∗ = (1, 1/2)T, it must hold that µ2 = 0 and µ3 = 0. The remaining(1p)

part of the KKT conditions is then:

µ1

(

1
1

)

=

(

1
1

)

,

which has solution µ1 = 1 ≥ 0. Hence, the point x
∗ is a KKT. From b) we

know that it is also an optimal solution.

Question 4

(the gradient projection algorithm)
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We have that ∇f(x) = (2x1 + x2 − 10, x1 + 4x2 − 4)T. So ∇f(x0) = (−5, 2)T

and x0 − α0∇f(x0) = (9/2, 0)T. Performing the projection we get that x1 =

ProjX (x0 − α0∇f(x0)) = ProjX
(

(9/2, 0)T
)

= (2, 0)T.

It holds ∇f(x1) = (−6,−2)T and x1 − α1∇f(x1) = (7/2, 1/2)T. Performing the

projection we get that x2 = ProjX (x1 − α1∇f(x1)) = ProjX
(

(7/2, 1/2)T
)

=

(2, 1/2)T.

The point x2 is actually a global minimum. This can be verified by either taking
another step with the algorithm or by noting that the point is a KKT-point.

Question 5(3p)

(modelling)

For each word wi, we introduce a binary decision variable xi such that xi = 1 if
and only if word wi is built. For each pair of words wi and wj with j > i, a binary
variable yij is used. If xi = 0 or xj = 0 we require that yij = 0. A model can
then be written as

maximize
n
∑

i=1

pixi +
n−1
∑

i=1

n
∑

j=i+1

bijyij

subject to
n
∑

i=1

oiαxi ≤Nα, ∀α

yij ≤ xi, i, j = 1, . . . , n, j > i

yij ≤ xj , i, j = 1, . . . , n, j > i

yij ∈{0, 1}, i, j = 1, . . . , n, j > i

xi ∈{0, 1}, i = 1, . . . , n.

The program is linear with binary variables.

Question 6

(true or false)

a) False. Take f(x) := ex.(1p)

b) False. Take f(x) := x4 at x = 0.(1p)
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c) True. See Proposition 3.65.(1p)

Question 7(3p)

(the Separation Theorem)

This is Theorem 4.28.


