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Question 1

(the simplex method)

Consider the following linear program:

minimize z = 2x1 + x2,

subject to 2x1 + x2 ≥ −2,

2x1 + 5x2 ≤ 6,

x2 ≥ 0.

a) Solve the problem using the simplex method. If the problem has an optimal(2p)
solution, then present the optimal solution in both the original and in the
variables used in the standard form. If the problem is unbounded, then use
your calculations to find a direction of unboundedness in both the original
variables and in the variables in the standard form.
Aid: Utilize the identity

(

a b
c d

)−1

=
1

ad − bc

(

d −b
−c a

)

.

b) Is the optimal solution obtained unique? Motivate your answer. If the(1p)
optimal solution is not unique, then state all alternative optimal solutions.

Question 2(3p)

(KKT conditions)

Let a1 ≥ a2 ≥ . . . ≥ an > 0 and consider the optimization problem to

minimize − log

(

n
∑

i=1

aixi

)

− log

(

n
∑

i=1

xi

ai

)

subject to
n
∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n.

Show that x = (1/2, 0, . . . , 0, 1/2)T is an optimal solution.
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Question 3

(problem decomposition)

Consider the problem to minimize a convex and differentiable function f of the
form

f(x) :=
∑

i∈I

fi(xi),

where I is a finite index set and xi ∈ R
n, subject to two types of constraints: (1)

an individual feasible set for each “block” of variables xi, of the form

xi ∈ Xi, i ∈ I,

where the sets Xi are non-empty polyhedral sets in R
n, and (2) a total resource

constraint of the form
∑

i∈I

xi ≤ u,

for some vector u ∈ R
n.

a) Describe how a Lagrangian relaxation algorithm for this problem would ap-(2p)
pear if we Lagrangian relax the resource constraint. Describe in particular
the appearance of the Lagrangian subproblem, and how you would solve it.
Can you easily provide a lower bound on the optimal value of the original
problem? How?

b) Suppose next that f is quadratic and that ni = 1 for all i ∈ I. Describe(1p)
how the Lagrangian subproblem can be solved analytically.
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Question 4(3p)

(Frank-Wolfe algorithm)

Consider the problem to

minimize
x1,x2

f(x) :=
(

x1 x2

)

(

6 2
2 9

)(

x1

x2

)

−
(

52 34
)

(

x1

x2

)

,

subject to x1 + 2x2 ≤ 4,

x1 + x2 ≤ 3,

2x1 ≤ 5,

x1 ≥ 0,

x2 ≥ 0.

(1)

Solve problem (1) with the Frank–Wolfe algorithm. Start with initial guess x
(0) =

(x1, x2)
T = (2.5, 0)T. Use exact minimization for line search. If necessary, you are

allowed to carry out the calculations approximately with two digits of accuracy.

[Hint: You may find it helpful to analyze the problem and the algorithm progress
in a picture, but this should be augmented with rigorous analysis.]

Question 5

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer together with a short but complete motivation.

a) Suppose that you wish to solve a linear integer program, and that you start(1p)
by solving its continuous relaxation. Suppose that x̄ is a solution to this
problem. Then, an optimal solution to the integer program can always be
found by rounding, individually, each element of x̄ either up or down to the
nearest integer value.

b) Suppose that you are able to solve a nonlinear optimization problem and(1p)
that in a globally optimal solution to it there is one inequality constraint
that is satisfied with strict inequality. Then, this inequality is redundant,
and can be removed without affecting the optimal solution.

c) Suppose that you consider minimizing a convex and differentiable function(1p)
f over a closed convex set S, and that you have found an optimal solution



EXAM
TMA947/MMG621 — OPTIMIZATION, BASIC COURSE 4

x
∗. Suppose also that there is another optimal solution x̄. Then, all points

on the line segment between x
∗ and x̄ must also be optimal.

Question 6(3p)

(the Relaxation Theorem)

Given the problem to find

f ∗ := infimum
x

f(x), (1a)

subject to x ∈ S, (1b)

where f : R
n → R is a given function and S ⊆ R

n, we define a relaxation to (1)
to be a problem of the following form: find

f ∗

R := infimum
x

fR(x), (2a)

subject to x ∈ SR, (2b)

where fR : R
n → R is a function with the property that fR ≤ f on S, and where

SR ⊇ S. For this pair of problems, we have the following basic result. You are
asked to establish it.

Theorem 1 (Relaxation Theorem)

(a) [relaxation] f ∗
R ≤ f ∗.

(b) [infeasibility] If (2) is infeasible, then so is (1).

(c) [optimal relaxation] If the problem (2) has an optimal solution, x
∗
R, for which

it holds that
x
∗

R ∈ S and fR(x∗

R) = f(x∗

R), (3)

then x
∗
R is an optimal solution to (1) as well.
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Question 7

(modelling)

Consider a square with side length L and corners in (0, 0), (0, L), (L, 0) and (L,L).
Formulate the problem of placing n circles inside the square in such a way that no
circles overlap and such that the total area covered by the circles is maximized.
Note that the radius of each circle should also be a variable in the optimization
model.

Tip: Let ri be the radius of circle i = 1, . . . , n, and let (xi, yi) be the coordinate
of the center point of circle i = 1, . . . , n. These are the only variables you will
need in the optimization model.

In the figures below you can see one feasible solution and two infeasible solutions
for the problem when n = 4.

Feasible Infeasible
(not inside the square)

Infeasible
(overlapping)
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2 and x1 = x+

1 − x−

1 . Consider the following linear program:

minimize z = 2x+
1 − 2x−

1 + x2

subject to −2x+
1 + 2x−

1 − x2 + s1 = 2,

2x+
1 − 2x−

1 + 5x2 + s2 = 6,

x+
1 , x−

1 , x2, s1, s2 ≥ 0.

Phase II

The Phase I does not have to be used in this case, the starting basis is
obviously (s1, s2).

Calculating the reduced costs, we obtain c̃N = (2,−2, 1)T, meaning that
x−

1 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s1. Updating the basis we now have (x−

1 , s2) in the
basis.

Calculating the reduced costs, we obtain c̃N = (0, 0, 1)T ≥ 0, meaning that
the current basis is optimal. The optimal solution is thus

x
∗ = (x+

1 , x−

1 , x2, s1, s2)
T = (0, 1, 0, 0, 8)T,

which in the original variables means x
∗ = (x1, x2)

T = (−1, 0)T with opti-
mal objective value f ⋆ = −2.

b) The reduced costs of for the optimal basis of the problem are c̃N = (0, 0, 1)T(1p)
meaning that the variable x2 can enter the basis and the optimal objec-
tive value will remain the same f ∗ = −2. The alternative optimal solu-
tion is then x̃∗ = (x1, x2)

T = (−2, 2)T. Hence, all points lying on the
line segment connecting the extreme points x∗ and x̃∗ are optimal, i.e.,
[x1,−2x1 − 2], ∀x1 ∈ [−2,−1] is the optimal solution.

Question 2(3p)

(KKT conditions) The objective function is convex, as can be seen by noting that
both terms are compositions of a convex function (i.e.,

∑

i aixi) and an increasing
convex function − log(.). Since the constraints are linear, the problem is a convex
one, and the KKT conditions are thus sufficient for global optimality.
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The KKT conditions become (with λ being the multiplier associated to the equal-
ity constraint, and µi being the multiplier associated to the i:th non-negativity
constraint)

ai
∑

i aixi

+
1/ai

∑

i xi/ai

+ µi = λ, i = 1, . . . , n, (1)

∑

i

xi = 1, (2)

xi ≥ 0, i = 1, . . . , n, (3)

µixi = 0, i = 1, . . . , n, (4)

µi ≥ 0, i = 1, . . . , n. (5)

Inserting x = (1/2, 0, . . . , 0, 1/2)T yields a feasible solution, and show the opti-
mality of x we must produce a solution (λ, µi) to the system

ai

a1 + an

+
ai

1
a1

+ 1
an

+ µi = λ, i = 1, . . . , n, (6)

µi ≥ 0, i = 1, . . . , n (7)

µ1 = µn = 0. (8)

We see that using the first equality for i = 1 yields that we must have

λ =
a1

a1 + an

+
1/a1

1
a1

+ 1
an

=
a1(1/a1 + 1/an) + 1/a1(a1 + an)

(a1 + an)(1/a1 + 1/an)

=
2 + a1/an + an/a1

(a1 + an)(1/a1 + 1/an)

(9)

And (due to the symmetry between a1 and an in the above we see that the first
equality is also satisfied for i = n with this λ. It only remains to show that

µi =
2 + a1/an + an/a1

(a1 + an)(1/a1 + 1/an)
−

ai

a1 + an

+
ai

1
a1

+ 1
an

≥ 0 (10)

For all i = 2, . . . , n − 1. But writing the above with a common denominator we
get
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2 + a1/an + an/a1

(a1 + an)(1/a1 + 1/an)
−

ai

a1 + an

+
ai

1
a1

+ 1
an

=
ai/a1 + ai/an + a1/ai + an/ai − 2 − a1/an − an/a1

(a1 + an)(1/a1 + 1/an)

≥ 0 (11)

Where the final follows since

ai/a1 ≥ 1, (12)

an/ai ≥ 1, (13)

a1/ai ≥ a1/an, (14)

ai/an ≥ a1/an (15)

Thus (1/2, 0, . . . , 0, 1/2)T is a KKT point, and hence optimal since the problem
is convex.

Question 3

(problem decomposition)

a) The Lagrangian subproblem separates into |I| independent subproblems of(2p)
the form

minimize
x i∈Xi

fi(xi) + µ
T
xi;

the value of the Lagrangian dual function q(µ) is the sum of these |I|
optimal values minus µ

T
u. Any such value is a lower bound on the optimal

valuem by the Weak Duality Theorem 6.5.

b) In this case fi(xi) = cixi +
qi

2
x2

i , where qi ≥ 0 for all i, hence the Lagrangian(1p)
term for index i has the form cixi + qi

2
x2

i + µixi. Its minimum over the
closed interval Xi is easily found by comparing objective values at the two
boundary points and potentially feasible stationary points.

Question 4(3p)

(Frank-Wolfe algorithm)
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Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick
black boundary lines) and some contours of the objective function. The optimal
solution is denoted by x⋆ (i.e., the red dot in the figure). x(k) for k = 0, 1, 2
denotes iterates visited by the Frank-Wolfe algorithm.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x(0)

x(1)

x⋆ = x(2)

x1

x
2

Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a poly-
hedron with boundary denoted by the thick black lines. Some contours of the
objective function are shown. The optimal solution x

⋆ = (2.5, 0.5). The dotted
lines show the Frank-Wolfe iterations, with x

k, k = 0, 1, 2 denoting the iterates.

The details of the algorithm steps are as follows. Let X denote the feasible set.
Let f(x1, x2) denote the objective function. For any given iterate x

k = (xk
1, x

k
2).

The objective function gradient vector is

∇f(xk
1, x

k
2) =

[

12 4
4 18

] [

xk
1

xk
2

]

−

[

52
34

]

.

The search direction problem is

minimize
x∈X

∇f(xk
1, x

k
2)

T
x. (1)

If min
x∈X

∇f(xk
1, x

k
2)

T
x ≥ ∇f(xk

1, x
k
2)

T
xk, then by the optimality conditions (for

minimizing a convex function over a convex feasible set) x
k is optimal. Otherwise,

let y
k denote an optimal solution to the search direction problem. Then the exact

minimization line search problem can be expressed into

minimize
α∈[0,1]

f(αx
k + (1 − α)yk) ⇐⇒ minimize

α∈[0,1]
gα2 + hα,
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where

g =
(

x
k − y

k
)T
[

6 2
2 9

]

(

x
k − y

k
)

h =
(

x
k − y

k
)T
([

12 4
4 18

]

y
k −

[

52
34

])

.

(2)

The minimizing value of α, denoted by αk, can be found using the optimality
condition to be

αk =



















0 if − h
2g

< 0

− h
2g

if 0 ≤ − h
2g

≤ 1

1 if − h
2g

> 1

. (3)

The iterate update formula is

x
k+1 = αk

x
k + (1 − αk)yk. (4)

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with
x

0 = (2.5, 0)T, the objective function gradient is

∇f(x0
1, x

0
2) =

[

12 4
4 18

] [

x0
1

x0
2

]

−

[

52
34

]

=

[

12 4
4 18

] [

2.5
0

]

−

[

52
34

]

=

[

−22
−24

]

.

To solve the search direction problem in (1), it is sufficient to restrict the feasible
set to the set of all extreme points. That is,

minimize
x∈V

∇f(x0
1, x

0
2)

T
x, (5)

where V is the set of all extreme points defined as

V =
{

(0, 0), (0, 2), (2, 1), (2.5, 0.5), (2.5, 0)
}

.

This amounts to finding the minimum among five numbers: 0, −48, −68, −67,
−55. The result is that y

0 = (2, 1). Applying the formula in (2) yields

g =

([

2.5
0

]

−

[

2
1

])T [

6 2
2 9

]([

2.5
0

]

−

[

2
1

])

= 8.5

h =

([

2.5
0

]

−

[

2
1

])T ([

12 4
4 18

] [

2
1

]

−

[

52
34

])

= −4

According to (3), α0 = 4
17

. Hence, by (4)

x
1 =

4

17
(
5

2
, 0) + (1 −

4

17
)(2, 1) = (

36

17
,
13

17
) ≈ (2.12, 0.76).
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This is shown in Figure 1.

At the next iteration with x1 = (36
17

, 13
17

), we have

∇f(x1
1, x

1
2) =

[

12 4
4 18

] [

x1
1

x1
2

]

−

[

52
34

]

=
1

17

[

−400
−200

]

≈

[

−23.53
−11.76

]

.

Solving (5) amounts to finding the minimum of 0, −4, −10, −11, −10. This leads
to y1 = (2.5, 0.5). Applying (2) leads to

g = 1275
1156

≈ 1.10

h = 125
34

≈ 3.68.

Thus, according to (3) α1 = 0, and from (4) x2 = y1 = (2.5, 0.5)T as shown in
Figure 1.

At the final iteration with x2 = (2.5, 0.5)T, we have

∇f(x2
1, x

2
2) =

[

−20
−15

]

.

Solving (5) leads to y
2 = x

2 = (2.5, 0.5)T. Thus, it holds that

min
x∈X

∇f(x2
1, x

2
2)

T
x ≥ ∇f(x2

1, x
2
2)

T
x2.

By the optimality conditions, x
2 = (2.5, 0.5)T is the optimal solution to our

problem.

Question 5

(true or false)

a) False. It is not necessarily so that any such rounding, up or down, of(1p)
individual variables, lead to a feasible solution.

b) False. In the non-convex case there may be “better points” outside of the(1p)
feasible set.

c) True. This is Proposition 4.26.(1p)
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Question 6(3p)

(the Relaxation Theorem)

This is Theorem 6.1.

Question 7(3p)

(modelling)

Let (xi, yi) be the coordinates of the center poitn of circle i = 1, . . . , n, and let
ri be the radius of cirlce i = 1, . . . , n. Then the optimization problem can be
formulated as the following:

maximize
n
∑

i=1

πr2
i ,

subject to
√

(xi − xj)2 + (yi − yj)2 ≥ ri + rj, i 6= j,

ri ≤ xi ≤ L − ri, i = 1, . . . , n,

ri ≤ yi ≤ L − ri, i = 1, . . . , n,

ri ≥ 0, i = 1, . . . , n.


