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Question 1

(the simplex method)

Consider the following linear program:

minimize z = 3x1 − x2 + x3,

subject to x1 + 3x2 − x3 ≤ 5,

−2x1 + x2 − 2x3 ≤ −2,

x1, x2, x3 ≥ 0.

a) Solve the problem using phase I (so that you begin with a unit matrix as(2p)
the first basis) and phase II of the simplex method. If the problem has
an optimal solution, then present the optimal solution in both the original
variables and in the variables used in the standard form. If the problem is
unbounded, then use your calculations to find a direction of unboundedness
in both the original variables and in the variables in the standard form.
Aid: Utilize the identity

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

.

b) Suppose that to the original problem we add a new variable x4 and obtain(1p)
the new problem to

minimize z = 3x1 − x2 + x3 −
1

2
x4,

subject to x1 + 3x2 − x3 + 8x4 ≤ 5,

−2x1 + x2 − 2x3 − x4 ≤ −2,

x1, x2, x3, x4 ≥ 0.

If the original problem has an optimal solution, explain how the optimal
solution is affected by adding the new variable. If the original problem is
unbounded, investigate if adding the new variable affects the unbounded-
ness of the problem.

Note: Use your calculations from a) to answer the question.
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Question 2

(nonlinear programming)

a) Consider the function f(x) := 1
2
x

T
x − c

T
x, where c,x ∈ R

2. At x =(1p)
(−3, 4)T, which directions p ∈ R

2 are descent directions with respect to f?

b) Consider the problem of minimizing the function f(x) := x2 subject to(2p)
the constraint that x ≥ 1. Consider an extension of the standard exterior
penalty method for this problem, in which the penalty function is

Fk(x) :=

{

k(1 − x), x < 1,

0, x ≥ 1,

where k is a non-negative integer. Derive the solution for this penalized
problem for any positive value of the parameter k, and show that this
penalty function yields convergence to the optimal solution for a finite value
of the parameter.

Question 3(3p)

(characterization of convexity in C1)

Let f ∈ C1 on an open convex set S. Establish the following characterization of
the convexity of f on S:

f is convex on S ⇐⇒ f(y) ≥ f(x) + ∇f(x)T(y − x), for all x,y ∈ S.

Question 4

(modelling)

A company serving as a middle hand wants to plan its inventory management of
a product over the next week. Each day t = 1, . . . , 7, the company can buy the
product from a producer to a cost of ct per unit. The demand of the product the
company needs to fulfill on day t is dt, where t = 1, . . . , 7 . The company has a
storage facility where it can store at most M units of the product at a cost of g

per unit and day. On the first day (t = 1) the storage facility is empty.

a) Formulate a linear optimization model for the minimization of the cost for(2p)
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buying the product, while fulfilling the demand at each time step. Note
that it is possible to buy fractions of units of the product.

b) The producer has realized that the company sometimes purchase large(1p)
quantities on certain days. Therefore, the producer has decided that each
day the company buys more than K units, the company needs to pay more.
For units purchased over the limit K on day t, the the company pays c

high
t

per unit, where c
high
t > ct.

(Example: Let t = 1 and K = 10. If the company buys 12 units on day
t = 1, then the cost is 10c1 + 2chigh

1 )

Extend the model in a) such that the new information is taken into account.
Note that the model should still be a linear optimization model, i.e., no
binary variables.

Question 5

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer together with a short but complete motivation.

a) Let p 6= 0n be a subgradient to the convex function f : R
n 7→ R at the(1p)

point x ∈ R
n.

Claim: −p is a descent direction to f at x.

b) Consider the problem to(1p)

minimize 0, (1a)

subject to gi(x) ≤ 0, i = 1, . . . ,m, (1b)

x ∈ X, (1c)

where X ⊆ R
n. Let q : R

m 7→ R be the dual function obtained by La-
grangian relaxing the constraints (1b). We have that at a point ū ≥ 0m,
q(ū) = 1.

Claim: The set {x ∈ X | gi(x) ≤ 0, i = 1, . . . ,m} is empty.

c) Suppose S ⊆ R
n is a nonempty and convex set, and let f ∈ C1 on R

n.(1p)
Define the function F : R

n 7→ R ∪ {−∞} by

F (x) := infimum
y∈S

∇f(x)T(y − x).

Claim: F (x) ≤ 0 for all x ∈ S.
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Question 6

(KKT conditions)

Consider the problem

minimize − (x1 − 2)2 − (x2 − 2)2, (1a)

subject to (x1 + x2 − 4)2 ≥ 1, (1b)

0 ≤ x1 ≤ 4, (1c)

0 ≤ x2 ≤ 4. (1d)

a) Find all KKT-points. (You may do this graphically.)(2p)

b) Motivate logically why the problem (1) has an optimal solution among the(1p)
KKT-points.

Question 7

(linear programming duality and optimality)

Consider a project management problem whose decision variables are the starting
times (i.e., t1, t2, t3, t4) of four different tasks. Each task requires a given amount
of time to complete (i.e., Ti ≥ 0 for i = 1, 2, 3, 4 given). In addition, between
certain tasks there can be precedence constraints summarized in Figure 1. Specif-
ically, if in Figure 1 there is an edge from node i to node j, then it means that
task j cannot start before task i is completed (i.e., tj ≥ ti +Ti). The objective of
the project management problem is to minimize the total duration of the project
involving the four tasks. The objective function is t4 + T4 − t1, but the constant
T4 can be removed from the objective. In summary, the project management
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problem can be modeled as

minimize
t1,t2,t3,t4

t4 − t1

subject to t2 − t1 ≥ T1,

t3 − t1 ≥ T1,

t3 − t2 ≥ T2,

t4 − t2 ≥ T2,

t4 − t3 ≥ T3,

and we will call this the primal problem.

!"

#"

$"

%"

Figure 1: The graph describing the precedence constraints between the tasks in
the project management problem. A directed edge from node i to node j means
that task j cannot start before task i is completed (e.g., i = 1 and j = 2).

a) Derive the dual linear program (i.e., the dual problem), with one dual(1p)
decision variable for each primal precedence constraint.

b) Specialize the problem data to T1 = 1, T2 = 2, T3 = 1 and T4 = 1. Suppose(1p)
by inspection, we obtain the primal optimal solution as

t∗1 free, t∗2 = t∗1 + 1, t∗3 = t∗1 + 3, t∗4 = t∗1 + 4.

What is the optimal solution to the dual problem?

Hint: The following provides an idea of how to approach the solution, but

it is not required that the given idea is followed. Consider putting weight Ti

to each edge from node i to node j in Figure 1. Which is the directed path

from node 1 to node 4 with the maximum sum of edge weights? Does this

give you a feasible solution to the dual problem? How do you certify the

optimality of the dual feasible solution?

c) Verify that the complementary slackness conditions indeed hold for the(1p)
primal and dual optimal solutions.
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = 3x1 − x2 + x3

subject to x1 + 3x2 − x3 + s1 = 5,

2x1 − x2 + 2x3 − s2 = 2,

x1, x2, x3, s1, s2 ≥ 0.

Phase I

We introduce an artificial variable a and formulate our Phase I problem.

minimize z = a

subject to x1 + 3x2 − x3 + s1 = 5,

2x1 − x2 + 2x3 − s2 + a = 2,

x1, x2, x3, s1, s2, a ≥ 0.

We now have a starting basis (s1, a). Calculating the reduced costs we
obtain c̃N = (−2, 1,−2, 1)T, meaning that x1 or x3 should enter the basis.
We choose x3. From the minimum ratio test, we get that a should leave
the basis. This concludes Phase I and we now have the basis (s1, x3).

Phase II

Calculating the reduced costs, we obtain c̃N = (2,−1
2
, 1

2
)T. meaning that

x2 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s1. Updating the basis we now have (x2, x3) in the
basis.

Calculating the reduced costs, we obtain c̃N = (12
5
, 1

5
, 2

5
)T ≥ 0, meaning

that the current basis is optimal. The optimal solution is thus

(x1, x2, x3, s1, s2)
T = (0,

12

5
,
11

5
, 0, 0, 0)T,

which in the original variables means (x1, x2, x3)
T = (0, 12

5
, 11

5
)T with opti-

mal objective value f ⋆ = −1
5
.

b) Calculating the reduced costs of the modified problem for the optimal basis(1p)
of the original problem, we obtain c̃N = (12

5
, 1

5
, 2

5
, 7

10
)T ≥ 0 meaning that the

the optimal basis from the original problem gives the optimal solution of the
modified problem (x1, x2, x3, x4)

T = (0, 12
5
, 11

5
, 0)T with optimal objective

value f ⋆ = −1
5
.
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Question 2

(nonlinear programming)

a) As ∇f(x) = x − c, we have that ∇f(x)T
p = p

T(x − c). With x =(1p)
(−3, 4)T we hence have that descent is obtained whenever ∇f(x)T

p < 0,
i.e. whenever p1(−3−c1)+p2(4−c2) < 0. Further if p 6= 0 and f(x)T

p ≥ 0,
by strict convexity of f we have, for any δ > 0, that f(x + δp) > f(x) +
δ∇f(x)T

p ≥ f(x), so p is a descent direction to f at x = (−3, 4)T precisely
when p1(−3 − c1) + p2(4 − c2) < 0.

b) With the set-up considered we will, for a given penalty parameter value(2p)
k (a non-negative integer) consider the following penalty function to be
minimized over R:

Pk(x) :=







x2 + k(1 − x), x < 1,

x2, x ≥ 1,

The minimizer x∗

k of Pk is at x = 1
2

for k = 1 and at x = 1 for all positive
integers k ≥ 2. The latter is also the optimal solution to the problem.

Question 3(3p)

(characterization of convexity in C1)

This is Theorem 3.61(a).

Question 4

(modelling)

a) Let xt denote the number of units purchased from the producer on day t,(2p)
and let yt denote the number of units in the storage at the beginning of
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time t. Then the model is

minimize
7

∑

t=1

(ctxt + gyt) ,

subject to xt + yt ≥ dt, t = 1, . . . , 7,

yt+1 = yt + xt − dt, t = 1, . . . , 6,

y1 = 0,

yt ≤ M, t = 1, . . . , 7,

xt, yt ≥ 0, t = 1, . . . , 7.

b) We now introduce variables x
high
t denoting the number of units purchased(1p)

on day t for the higher price c
high
t , and xlow

t denoting the number of units
purchased on day t for the lower price ct. Now the model is

minimize
7

∑

t=1

(

c
high
t x

high
t + ctx

low
t + gyt

)

,

subject to xt + yt ≥ dt, t = 1, . . . , 7,

yt+1 = yt + xt − dt, t = 1, . . . , 6,

y1 = 0,

yt ≤ M, t = 1, . . . , 7,

xt = x
high
t + xlow

t , t = 1, . . . , 7,

xlow
t ≤ K, t = 1, . . . , 7,

xt, yt ≥ 0, t = 1, . . . , 7.

Question 5

(true or false)

a) False. Counter example: f = |x|, x = 0, and p = 1. Then p is a subgradient(1p)
to f at x = 0, but it is not a descent direction.

b) True. The claim follows directly from weak duality.(1p)

c) True. For all x ∈ S, we can choose y = x in the minimization, implying(1p)
that the value of the infimum must be smaller than or equal to zero.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 4

Question 6

(KKT conditions)

a)(2p)

Notice that the constraint (x1 + x2 − 4)2 ≥ 1 is active precisely when
x1 + x2 − 4 = ±1. The feasible set can thus be drawn as two disjoint
triangles with extreme points in (0, 0), (0, 3), (3, 0) and (4, 4), (4, 1), (1, 4),
respectively.

The level curves of the objective function are circles centred in (2, 2), so the
negative gradient of the objective function at x lies along the line from (2, 2)
to x. This allows us to draw the figure 1. Searching for points where the
negative objective function lies in the normal cone, i.e., −∇f(x) ∈ NS(x),
we graphically find the KKT-points indicated in the figure. Thus the KKT
points are {(0, 0), (2, 0), (3, 0), (4, 1), (4, 2), (4, 4), (2, 4), (1, 4), (0, 3), (0, 2)}.

b) To motivate logically we need to establish two claims.(1p)
Claim 1: The problem has some optimal solution.
Claim 2: Any (locally) optimal solution is a KKT-point.

To establish Claim 1, we note that the objective function and all constraint
functions are continuous, so the feasible set S is closed. Further S is clearly
bounded, due to the constraints 0 ≤ xi ≤ 4. Hence Weierstrass’ Theorem
establishes the claim.

To establish Claim 2, we recall that any locally optimal is a KKT-point
if some constraint qualification holds. Looking at figure 1, we can note
that the gradients of the active constraints are linearly independent in each
point, hence LICQ holds.

Question 7

(linear programming duality and optimality)

a) For problem a), let yij be the dual variable associated with constraint tj −(1p)
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Figure 1: Feasible set and level curves of the objective function. Green arrows
indicate the negative objective function gradient, red arrows indicate gradients
of active constraints. The normal cones are indicated in yellow.

ti ≥ Ti corresponding to edge (i, j), from node i to node j. Then the dual
problem can be written as

maximize
y12, y13, y23, y24, y34

T1y12 + T1y13 + T2y23 + T2y24 + T3y34

subject to − y12 − y13 = −1

y12 − y23 − y24 = 0

y13 + y23 − y34 = 0

+ y24 + y34 = 1
y12, y13, y23, y24, y34 ≥ 0.

b) For problem b), let t∗i be the optimal starting times in the primal problem.(1p)
The reason behind the given expressions for the primal optimal solutions is
as follows:

t∗2 = t∗1 + T1 = t∗1 + 1

t∗3 = max{t∗1 + T1, t
∗

2 + T2} = max{t∗1 + 1, t∗1 + 1 + 2} = t∗1 + 3

t∗4 = max{t∗2 + T2, t
∗

3 + T3} = max{t∗1 + 1 + 2, t∗1 + 3 + 1} = t∗1 + 4

Therefore, the optimal objective value of the primal problem is t∗4 − t∗1 = 4.
Notice that the precedence constraints associated with edges (1, 2), (2, 3), (3, 4)
are active but those with edges (1, 3) and (2, 4) are not active.
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For the dual problem, consider the 0−1 binary valued dual optimal solution
candidate according to the rule that y∗

ij = 1 if and only if edge (i, j) is on
the path from node 1 to node 4 with the maximum sum of edge weights.
This path is (1, 2) → (2, 3) → (3, 4). Thus, y∗

12 = y∗

23 = y∗

34 = 1 and
y∗

13 = y∗

24 = 0. These dual variables are feasible, and the corresponding
dual objective value is 4 which is the same as the optimal primal objective
value. Therefore, the weak duality theorem implies that y∗

ij are indeed dual
optimal.

For your information, the dual problem has the interpretation of a maxi-
mum cost flow problem where one unit of “flow” is shipped from the source
(node 1) to the sink (node 4). The total supply to node 1 is one unit (i.e.,
the first constraint in the dual problem), and the total demand at node
4 is one unit (i.e., the last constraint in the dual problem). In addition,
for node 2 and node 3, the total incoming flow is equal to the total outgo-
ing flow (i.e., flow is conserved). The dual problem seeks to route the one
unit of flow through the network in order to maximize the cost in the dual
objective function. Because of the integer-valued supply and demand, the
maximum cost flow problem amounts to finding the path of the maximum
sum of edge weights from the source to the sink.

c) For problem c), the primal and dual optimal solutions can be verified to(1p)
satisfy

y∗

ij(t
∗

j − t∗i − Ti) = 0, for all edges (i, j).

These are the complementary slackness optimality conditions. In particular,
for edges (1, 2), (2, 3) and (3, 4) where y∗

ij = 1, the corresponding primal
precedence constraints are active (i.e., t∗j − t∗i −Ti = 0). On the other hand,
for edges (1, 3) and (2, 4) where the primal precedence constraints are not
active, the corresponding dual variables must be zero.


