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Question 1

(the simplex method)

Consider the following linear program to

minimize x1 − x2,

subject to x1 + x2 ≥ 1,

x1 + 2x2 ≤ 4,

x2 ≥ 0.

a) Solve this problem using phase I (so that you begin with a unit matrix as(2p)
the first basis) and phase II of the simplex method. If the problem has
an optimal solution, then present the optimal solution in both the original
variables and in the variables used in the standard form. If the problem is
unbounded, then use your calculations to find a direction of unboundedness
in both the original variables and in the variables used in the standard form.

Aid: Utilize the identity
(

a b
c d

)−1

=
1

ad − bc

(

d −b
−c a

)

.

b) Is the solution obtained unique? Use your calculations from a) to motivate(1p)
why/why not.

Question 2

(Lagrangian relaxation)

Consider the optimization problem to

minimize (x1 − 4)2+(x2 − 2)2, (1a)

subject to x1 + x2 ≤ 4, (1b)

0 ≤ xj ≤ 4, j = 1, 2. (1c)

a) Formulate and solve the dual problem obtained when Lagrangian relaxing(2p)
the constraint (1b).
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b) Construct an optimal solution to the primal problem (1) by using the in-(1p)
formation obtained in a).

Question 3(3p)

(algorithm choice)

For the following optimization problems, choose the most appropriate solution-
method from the list below, in the sense that the method requiring more assump-
tions on a problem is deemed as more approriate (i.e., although a linear program
can be solved with an exterior penalty method, this is deemed as less approriate
than a pure linear programming solution method). Answers without motivation
will be disregarded.

• The Simplex method

• The Frank–Wolfe method

• The subgradient method

• The exterior penalty method

• Newton’s method with the Levenberg–Marquardt modification

a)(1p)

minimize (x2

1 + 3x2

2)e
x1+x2 ,

subject to x1 − x2 ≤ 0,

0 ≤ x1, x2 ≤ 5

b)(1p)
maximize

µ≥0
q(µ),

where q is the Lagrange dual function to the problem in (a), formed by
relaxing the first constraint (assume that q(µ) is easy to compute)

c)(1p)
minimize x2

1 − 3x2

2 + 2x1x2,

subject to (x1 − 3)2 + (x2 − 4)2 ≤ 25,

(x1 + 1)2 + (x2 + 2)2 ≥ 16
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Question 4

(cones and conditions)

Consider the problem to

minimize x1 + x2,

subject to sin(πx1) = 0,

sin(πx2) = 0,

the feasible set of which is denoted by S. Note that S = Z2 = {x | x1, x2 integers}.

a) Show that the tangent cone is(1p)

TS(x) = {0m} for all x ∈ S. Reminder : the tangent cone is defined by

TS(x) :=
{

p | p = lim
k→∞

λk(xk − x), lim
k→∞

xk = x, λk ≥ 0, xk ∈ S for all k = 1, 2, . . .
}

.

b) Find all KKT-points of the problem. Is any KKT-point a globally optimal(2p)
solution? You may, if you so wish, assume that the Abadie CQ holds.

Question 5(3p)

(modelling)

An online casino is running a promotion giving new players a gift item after a
certain amount of money M has been used for betting. An optimization student
who justs wants the gift item asks the question whether he/she should buy the
item from a store or if he/she can find a betting strategy in which the worst case
loss of money is less than the price of the item in a store.

Your task is therefore to formulate a linear programming model determining
which bets to make in order to maximize the guaranteed payout (i.e., the worst
case scenario) after exactly M SEK of bets have been made.
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Assume that there is an available set of games N := {1, . . . , N} to bet on, each
having a set Bi of Ki mutually exclusive possible bets Bi := {1, . . . , Ki} yielding
a payout rik for i ∈ N , k ∈ Bi.

Example: There are two football matches to bet on: Inter Milan against AC
Milan with payouts 10.0, 3.5, 1.1 and Juventus against Roma with payouts
2.0, 2.0, 2.0. A player betting all M = 10000 SEK on AC Milan winning versus
in the (very unlikely) worst-case scenario loses all the money. A player who bets
equal amounts 10000/6 on SEK on all six bets nets in the worst-case scenario
(i.e., AC Milan winning and any result in Juventus against Roma) 1.1×10000/6+
2.0 × 10000/6 = 5166.66 . . . SEK.

Question 6(3p)

(strong duality in linear programming)

Consider the following standard form of a linear program:

minimize cTx,

subject to Ax = b,

x ≥ 0n,

where A ∈ R
m×n, c, x ∈ R

n, and b ∈ R
m. State and prove the Strong Duality

Theorem in linear programming.

Question 7

(true or false)

Indicate for each of the following three statements whether it is true or false.
Motivate your answers!

a) For the phase I (when a BFS is not known a priori) problem of the simplex(1p)
algorithm, the optimal value is always zero.

b) Suppose that the function f : R
n → R is continuously differentiable on R

n(1p)
and let G be a symmetric and positive definite matrix of dimension n× n.
Then, if ∇f(x) 6= 0n and the vector d fulfils Gd = −∇f(x) it holds that
f(x + td) < f(x) for small enough values of t > 0.

c) If the function g : R
n → R is concave on R

n and c ∈ R, then the set(1p)
{x ∈ R

n | g(x) ≤ c } is convex.
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We rewrite x1 = x+
1 − x−

1(2p)
and introduce slack variables s1 and s2.

minimize x+

1 − x−
1 − x2

subject to x+

1 − x−
1 + x2 − s1 = 1,

x+

1 − x−
1 + 2x2 + s2 = 4,

x+

1 , x−
1 , x2, s1, s2 ≥ 0.

Phase I

We introduce an artificial variable a and formulate our Phase I problem.

minimize a

subject to x+

1 − x−
1 + x2 − s1 + a = 1,

x+

1 − x−
1 + 2x2 + s2 = 4,

x+

1 , x−
1 , x2, s1, s2 ≥ 0.

We now have a starting basis (a, s2). Calculating the reduced costs we
obtain c̃N = (−1, 1,−1, 1)T, meaning that x+

1 or x2 should enter the basis.
We choose x2. From the minimum ratio rest, we get that a should leave
the basis. This concludes phase I and we now have the basis (x2, s2).

Phase II

Calculating the reduced costs, we obtain c̃N = (2,−2, 1)T, meaning that
x−

1 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s2. Updating the basis we now have (x−

1 , x2) in the
basis.

Calculating the reduced costs, we obtain c̃N = (0, 3, 2)T ≥ 0, meaning that
the current basis is optimal. The optimal solution is thus (x+

1 , x−
1 , x2, s1, s2)

T =
(0, 2, 3, 0, 0)T, which in the original variables means (x1, x2) = (−2, 3)T,
with optimal objective value f ∗ = −5.

b) The reduced costs are not all positive, so from the calculations we can not(1p)
draw any conclusions regarding the uniqueness of the solution. However,
the solution is unique in the original problem (draw the feasible set).
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Question 2

(Lagrangian relaxation)

a) The dual problem is that to(2p)

maximizeu≥0 q(u),

where q is the Lagrangian dual function defined as

q(u) = min
0≤xj≤4,j=1,2

(

(x1 − 4)2 + (x2 − 2)2 + u(x1 + x2 − 4)
)

(1)

= 20 − 4u + min
0≤x1≤4

(

x2

1 − 8x1 + ux1

)

+ min
0≤x2≤4

(

x2

2 − 4x2 + ux2

)

.

(2)

The minimum of the two subproblems in (2) are attained at

x1(u) =
8 − u

2
and x2(u) =

4 − u

2
.

respectively. Inserting this into (1) we get that

q(u) = 2u −
u2

2
,

which attains is maximum when q′(u) = 2 − u = 0. So the optimal dual
solution is u∗ = 2 with dual objective value q∗ = q(u∗) = 2.

b) At u = 2, we have that x1(u) = 3 and x2(u) = 1. This is a feasible solution(1p)
to the primal problem with objective value 2, which is the same as the
dual optimal value, implying that x

∗ = (3, 1)T is an optimal solution to the
primal problem.

Question 3

(algorithm choice)

a) The Frank–Wolfe method is most appropriate; exterior penalty is also appli-(1p)
cable but makes less assumptions on problem structure, the others are not
applicable. (Differentiable objective function, the feasible set is a bounded
polyhedron).
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b) The subgradient method is most appropriate. The only other candidate(1p)
for an applicable methods is the exterior penalty method, but it does not
use the convexity of the problem. Further, without checking it is unclear
whether the Lagrangian function is differentiable or not. (Lagrangian dual
problems are convex, and the subgradients can easily be computed).

c) Exterior penalty is the only applicable method.(1p)

Question 4

cones and conditions

a) TS(x) = {0} for all x ∈ S, since for any sequence {xk} ⊂ S, xk → x we(1p)
must have xk = x for all k ≥ K for some K.

b) For any x ∈ S, since TS(x) = {0} and (by assumption) Abadie’s CQ holds(2p)
we have G(x) = TS(x) = {0}. Thus G(x) ∩ F0(x) = ∅, so all points x ∈ S

are KKT-points (this can also be verified directly from solving the KKT-
system). Although all feasible points are KKT-points, none is optimal, as
the objective function is unbounded from below as x1 → −∞.

Question 5(3p)

modelling

We declare variables xik for i ∈ N , k ∈ Bi, to be understood as the amount of
cash bet k of game i. Further declare the variables yi as the worst case payout
from game i for i ∈ N . A model can then be written as

maximize
∑

i∈N

yi , (1)

subject to yi ≤ rikxik, i ∈ N , k ∈ Bi, (2)
∑

i∈N

∑

k∈Bi

xik = M, (3)

xik ≥ 0, i ∈ N , k ∈ Bi. (4)

The objective function (1) maximizes the worst case scenario payout. The in-
equalities (2) models that the worst case scenario payout is less than the payout
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for any outcome. The equality (3) states that the total amount of bets to be made
is M SEK. The final inequalities (4) are definitional and state that we cannot
bet negative money.

Question 6(3p)

(strong duality in linear programming)

See Theorem 10.6 in The Book.

Question 7

(true or false)

a) False. If no feasible solution exists, the optimal value is > 0. If feasible(1p)
solutions exist, the optimal value is = 0. (Section 9.1.2.)

b) True. We have that ∇f(x)T
d = −d

T
Gd < 0, since G is a positive definite(1p)

matrix (Section 2.2, page 37). Then, by Proposition 4.16, d is a descent
direction for f at x since ∇f(x)T

d < 0. Hence (Definition 4.15) ∃δ > 0
such that f(x + td) < f(x) for all t ∈ (0, δ].

c) False. Consider the function g(x) = 4−x2 and the two points x1 = −2 and(1p)
x2 = 3 which belong to the set S = { x ∈ R | g(x) ≤ 0 }. By Definitions
3.31 and 3.32, g is concave. The point 1

2
· x1 + 1

2
· x2 = 1

2
6∈ S. Hence, by

Definition 3.1, the set S is not convex.


