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Question 1

(the simplex method)

Consider the following linear program to find

f ∗ = infimum − 2x1 + x2,

subject to − x1 + x2 ≤ 1,

−x1 + 2x2 ≥ −4,

x1 ≥ 0.

a) Solve this problem using phase I (so that you begin with a unit matrix as(2p)
the first basis) and phase II of the simplex method. If the problem has
an optimal solution, then present the optimal solution in both the original
variables and in the variables used in the standard form. If the problem is
unbounded, then use your calculations to find a direction of unboundedness
in both the original variables and in the variables used in the standard form.

Aid: Utilize the identity

(

a b
c d

)

−1

=
1

ad− bc

(

d −b
−c a

)

.

b) Explain how a perturbation in the right-hand side coefficients affects f ∗.(1p)

Question 2

(Lagrangian duality and convexity)

Consider the problem to find

f ∗ = infimum (x1 − 1)2 − 2x2,

subject to x1 − 2x2 ≥ −2, (C)

x1, x2 ≥ 0.

a) Lagrangian relax the constraint (C), and evaluate the dual function q at(2p)
µ = 0 and µ = 2. Provide a bounded interval containing f ∗.
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b) Show that for a general convex function f : R
n → R and any x ∈ R

n, the(1p)
subdifferential ∂f(x) is a convex set.

Question 3(3p)

(gradient projection)

The gradient projection algorithm is a generalization of the steepest descent
method to problems defined over convex sets. Given a point xk the next point
is obtained according to xk+1 = ProjX [xk − αk∇f(xk)], where X is the con-
vex set over which we minimize, αk > 0 is the step length, and ProjX(y) :=
arg minx∈X ‖x − y‖ (i.e., the closest point in X to y). Note that if X = R then
the method reduces to the method of steepest descent.

Consider the optimization problem to

minimize f(x) :=
1

2
[(x1 + x2)

2 + 3(x1 − x2)
2],

subject to 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 2.

Start at the point x0 = (0 2)T and perform one iteration of the gradient projection
algorithm using step length αk = 1/4. Note that the special form of the feasible
region X makes the projection very easy! Is the point obtained a global/local
optimum? Motivate why/why not!

Question 4

(KKT conditions)

Consider the problem to

minimize x1 + x2,
subject to x1x2 ≤ 0,

x1, x2 ≥ 0.

a) Show that the KKT conditions hold at the optimal point x∗ = (0, 0)T.(1p)

b) Show that the Abadie CQ does not hold for this problem. (Hint: is the(1p)
tangent cone convex?).
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c) Now let f , gi ∈ C1, i = 1, . . . ,m. and consider the problem to(1p)

minimize f(x),
subject to gi(x) ≤ 0, i = 1, . . . ,m.

Show that the KKT conditions are necessary for optimality in this problem
under the Guignard CQ, which states that “G(x) = conv TS(x)”, where

G(x) := {p ∈ R
n | ∇gi(x)Tp ≤ 0, i ∈ I(x) },

I(x) denotes the active constraints at x, and TS(x) denotes the tangent
cone of the feasible set S at x. Does the Guignard CQ hold for this prob-
lem?. (Hint: consider refining the geometric optimality conditions.)

Question 5

(linear programming duality and optimality)

Let c ∈ R
n, b ∈ R

m, and A ∈ R
m×n, and consider the canonical LP problem

minimize z = cTx,

subject to Ax ≥ b,

x ≥ 0n.

We denote the problem by (P).

a) Formulate explicitly the Lagrangian dual problem corresponding to the La-(1p)
grangian relaxation of all constraints of (P). (That is, the dimension of the
Lagrangian dual problem is m + n.) Establish that this Lagrangian dual
problem is equivalent to the canonical LP dual (D) of (P).

b) In the context of Lagrangian duality in nonlinear programming, the stan-(2p)
dard formulation of the primal problem is that to find

f ∗ := infimum
x

f(x), (1)

subject to gi(x) ≤ 0, i = 1, . . . , ℓ,

x ∈ X,
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where f : R
n → R and gi : R

n → R (i = 1, 2, . . . , ℓ) are given functions,
and X ⊆ R

n.

Identify the LP problem (P) as a special case of the general problem (1).
State the global optimality conditions for the problem (1) and establish that
when applied to the problem (P) they are equivalent to the primal–dual
optimality conditions for the primal–dual pair (P), (D) of LP problems.

Question 6(3p)

(convergence of an exterior penalty method)

Let us consider a general optimization problem:

minimize f(x),

subject to x ∈ S,
(1)

where S ⊂ R
n is a non-empty, closed set and f : R

n → R is a given differentiable
function. We assume that the feasible set S of the optimization problem (1) is
given by the system of inequality and equality constraints:

S = {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ },
(2)

where gi ∈ C(Rn), i = 1, . . . ,m, hj ∈ C(Rn), j = 1, . . . , ℓ.

We choose a function ψ : R → R+ such that ψ(s) = 0 if and only if s = 0 (typical
examples of ψ(·) are ψ1(s) = |s|, or ψ2(s) = s2), and introduce the function

νχ̌S(x) := ν

( m
∑

i=1

ψ
(

max{0, gi(x)}
)

+
ℓ

∑

j=1

ψ
(

hj(x)
)

)

, (3)

where the real number ν > 0 is called a penalty parameter.

We assume that for every ν > 0 the approximating optimization problem to

minimize f(x) + νχ̌S(x) (4)

has at least one optimal solution x∗

ν .

Prove the following result.

Theorem 1 Assume that the original constrained problem (1) possesses optimal
solutions. Then, every limit point of the sequence {x∗

ν}, ν → +∞, of globally
optimal solutions to (4) is globally optimal in the problem (1).
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Question 7(3p)

(modelling)

On Sundays the Sudoku-like game Binero is often published in the local morning
paper. The objective is to fill out an n×n grid, using the numbers 0 or 1, where
n is an even number. The rules are that:

• there are no more than two consecutive identical numbers in any row or
column

• each row and column contains an equal amount of zeros and ones.

• no two rows are alike, and no two columns are exactly alike.

Consider the grid as a set of N × N rows and columns, with |N | = n. Let the
intially supplied numbers of a Binero puzzle be represented by the numbers aij

for (i, j) ∈ D ⊂ N × N , where aij is the number the puzzlemaker has placed
in row i, column j, and D is the set of rows/columns where there are numbers
placed.

Formulate an integer linear program whose feasible solutions yield solutions to
the puzzle. Describe also how you, by optimizing two versions of your model, can
determine whether the puzzle has unique solution or not.

[Note:] Do not solve the problem. Formulating a model for a subset of rules may
yield partial points, and the uniqueness part can be solved independently of the
original model being correct or not.

Figure 1: An example of a Binero puzzle (left) with n = 10 and its solution
(right).
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We rewrite x2 = x+
2 − x−

2(2p)
and introduce slack variables s1 and s2.

f ∗ = infimum − 2x1 + x+
2 − x−

2 ,

subject to − x1 + x+
2 − x−

2 + s1 = 0,

x1 − 2x+
2 + 2x−

2 + s2 = 4,

x1, x
+
2 , x−

2 , s1, s2 ≥ 0.

Phase I

If we start with basis (s1, s2), we have a unit matrix.

Phase II

Calculating the reduced costs, we obtain c̃N = (−2, 1,−1)T, meaning that
x1 should enter the basis. From the minimum ratio test, we get that the
only eligible outgoing variable is s2.

Updating the basis we now have (x1, s1) in the basis. At this BFS, we have
that c̃N = (−3, 3, 2)T, meaning that x+

2 should enter the basis. Performing
the minimum ratio test, we see that B−1Nx+

2
= (−2,−1)T, which means

that the problem is unbounded. A direction of unboundedness in variables
in the standard form then is

p =

[

−B−1Nx+

2

ex+

2

]

=











px1

ps1

px+

2

px−

2

ps2











=











2
1
1
0
0











.

Translating this to the original variables, we see that a direction of un-

boundedness is p =

[

px1

px2

]

=

[

2
1

]

b) We have that f ∗ = −∞, since the problem is unbounded. By weak du-(1p)
ality, we have that the LP dual is infeasible. But the feasible set to the
dual problem does not depend on the right-hand side vector b, so the dual
problem will always be infeasible. The only thing that can affect f ∗ is if
the perturbation also makes the primal problem infeasible, meaning that
f ∗ = ∞. However, in this example, the problem will always be unbounded.
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Question 2

(Lagrangian duality)

a) We create the Lagrangian function(2p)

L(x, µ) = (x1−1)2−2x2+µ(2x2−x1−2) =
(

x2
1 − 2x1 − µx1

)

+(2(µ − 1)x2)+1−2µ.

The dual function then is

q(µ) = min
x≥0

L(x, µ) = 1 − 2µ + min
x1≥0

(

x2
1 − 2x1 − µx1

)

+ min
x2≥0

(2(µ − 1)x2) .

At µ = 0, since the objective function coefficent for x2 is negative, letting
x2 → ∞ yields unbounded solutions to the Lagrangian subproblem. Thus
q(0) = −∞.

At µ = 2, to minimize the convex quadratic problem in x1 we let x1 =
1 + µ/2 = 2, and x2 = 0. Thus q(2) = −7. By weak duality it follows that
q(2) ≤ f ∗.

To find an upper bound, choose any feasible point, e.g. (x1, x2) = (1, 1),
which has objective value −2. Hence f ∗ ∈ [−7,−2].

b) Take g1, g2 ∈ ∂f(x) and λ ∈ (0, 1). Then(1p)

f(x) +
(

λg1 + (1 − λ)g2
)T

(y − x) = f(x) + λ(g1)T(y − x) + (1 − λ)(g2)T(y − x)

= λ
[

f(x) + (g1)T(y − x)
]

︸ ︷︷ ︸

≤f(y)

+(1 − λ)
[

f(x) + (g2)T(y − x)
]

︸ ︷︷ ︸

≤f(y)

≤ λf(y) + (1 − λ)f(y) = f(y), y ∈ R
n.

So λg1 + (1 − λ)g2 ∈ ∂f(x), which implies that ∂f(x) is a convex set.

Question 3(3p)

(gradient projection)

The starting point is x0 = (0 2)T, where f(x0) = 8. At this point, ∇f(x0) =
(2 2)T, so the search direction is p0 = (−2 − 2)T. With the step length α = 1

4
,

we obtain the point x = (−1
2

3
2
)T; as it is infeasible, we need to project this

point onto the feasible set; this yield the new iteration point x1 = (0 3
2
)T. The
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objective value at x1 is 9/2, so in this instance the step length was short enough
to produce descent.

We are then asked to check whether x1 is a stationary point, or indeed an optimal
solution. As the gradient projection method is a descent method, we simply
generate the search direction from x1 to find out if descent is obtained or not.

At x1, we have that ∇f(x1) = (−3 6)T, so the next search direction hence is
p0 = (3 − 6)T. At x1 this is feasible descent direction. Hence, x1 cannot be
optimal.

Question 4

(KKT conditions)

a) Let f(x∗) = x1 + x2, g1(x) = −x1, g2(x) = −x2, g3(x) = x1x2. We(1p)
get that ∇g1(x

∗) = [−1, 0]T, ∇g2(x
∗) = [0,−1]T, ∇g3(x

∗) = [0, 0]T and
∇f(x∗) = [1, 1]T. Hence

∇f(x∗) + 1∇g1(x
∗) + 1∇g2(x

∗) = 0,

which shows that x∗ is a KKT point.

b) The only (locally) optimal solution is x∗ = (0, 0)T. The feasible set S(1p)
consists of the non-negative coordinates axes, and hence for any x ∈ S
it holds that for p = x − x∗ we have p1p2 = 0. Thus p1p2 = 0 for any
p ∈ TS(x∗). Since both [1, 0]T ∈ TS(x∗) and [0, 1] ∈ TS(x∗) but (1/2, 1/2) /∈
TS(x∗) it follows that TS(x∗) is not a convex set. On the other hand, G(x∗)
is a convex polyhedron. Hence TS(x∗) 6= G(x∗).

c) Let x∗ be locally optimal. Then the geometric optimality condition yields(1p)

that
◦

F (x∗) ∩ TS(x∗) = ∅. For any p ∈ convTS(x∗) we have p =
∑k

j=1 αjpj

for some pj ∈ TS(x∗), 0 ≤ αj, j = 1, . . . , k,
∑k

j=1 αj = 1. Then

∇f(x∗)Tp = ∇f(x∗)T
k∑

j=1

αjpj

=
k∑

j=1

αj
︸︷︷︸

≥0

∇f(x∗)Tpj
︸ ︷︷ ︸

≥0

≥ 0,
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since pj ∈ TS(x∗) =⇒ pj /∈
◦

F (x∗). Hence p /∈
◦

F (x∗), and thus
◦

F (x∗) ∩

convTS(x∗) = ∅. By the Guignard CQ, then
◦

F (x∗) ∩ G(x∗) = ∅. The rest
of the proof follows by Farkas’ Lemma as for the proof under Abadies CQ.

Finally we note that for the problem in (a), G(x∗) = {p | p1, p2 ≥ 0} =
{p | p = α[1, 0]T + β[0, 1]T, α, β ≥ 0}. But since [0, 1]T ∈ TS(x∗) and
[1, 0]T ∈ TS(x∗) it follows that G(x∗) ⊆ convTS(x

∗). But since convTS(x
∗) ⊆

G(x∗) always holds, we must have that G(x∗) = convTS(x
∗); the Guignard

CQ holds at x∗. At any other feasible x, it is easy to see that the Abadie
CQ holds, hence the Guignard CQ holds everywhere.

Question 5

(linear programming duality and optimality)

a) Let the Lagrange multipliers be denoted by µ ∈ R
m
+ and σ ∈ R

n
+, respec-(1p)

tively.

Setting the partial derivative of the Lagrangian L(x,µ,σ) := cTx+µT(b−
Ax)−σTx to zero yields that σ = c−ATµ must hold. (This can be used to
eliminate σ altogether.) Inserting this into the Lagrangian function yields
that the optimal value of the Lagrangian when minimized over x ∈ R

n is
bTµ. According to the construction of the Lagrangian dual problem, bTµ

should then be maximized over the constraints that the dual variables are
non-negative; here, we obtain that µ ≥ 0m, and from σ ≥ 0n we further
obtain that ATµ ≤ c must hold. The Lagrangian dual problem hence is
equivalent to the canonical LP dual:

maximize w = bTµ, (D)

subject to ATµ ≤ c,

µ ≥ 0n.

b) We identify X = R
n, ℓ = m + n, and the vector(2p)

g(x) =

(

b − Ax

−x

)

.

The optimality conditions of (1) include both multiplier vectors µ and σ,
but σ is eliminated here as well. Primal feasibility corresponds to the
requirements that Ax ≥ b and x ≥ 0n hold, while dual feasibility was above
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shown to be equivalent to the requirements that ATµ ≤ c and µ ≥ 0m hold.
Finally, complementarity yields that µT(b − Ax) = 0 hold, as well as the
condition that σTx = 0 holds; the latter reduces (thanks to the possibility
to eliminate σ) to xT(ATµ − c) = 0, the familiar one. We are done.

Question 6(3p)

(convergence of an exterior penalty method)

This is Theorem 13.3.

Question 7(3p)

Introduce the binary variables xij for i, j ∈ N , denoting the value placed in row
i column j in the solution to the puzzle. Further introduce the variables

yi1i2j =







1, rows i1 and i2 are identical in column j,

0, otherwise.

and

zj1j2i =







1, columns j1 and j2 are identical in row i,

0, otherwise.

for i1, i2, j1, j2 ∈ N , i1 < i2, j1 < j2. A puzzle solution is equivalent to a feasible
solution to the constraints

k+2∑

j=k

xij ≥ 1, i ∈ N , k = 1, . . . , n − 2, (1)

k+2∑

j=k

xij ≤ 2, i ∈ N , k = 1, . . . , n − 2, (2)

n∑

j=1

xij =
n

2
, i ∈ N , (3)

k+2∑

i=k

xij ≥ 1, j ∈ N , k = 1, . . . , n − 2, (4)
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k+2∑

i=k

xij ≤ 2, j ∈ N , k = 1, . . . , n − 2, (5)

n∑

i=1

xij =
n

2
, j ∈ N , (6)

yi1i2j ≥ xi1j + xi2j − 1, i1, i2, j ∈ N , i1 < i2, (7)
yi1i2j ≥ 1 − (xi1j + xi2j) , i1, i2, j ∈ N , i1 < i2, (8)
zj1j2i ≥ xij1 + xij2 − 1, j1, j2, j ∈ N , j1 < j2, (9)
zj1j2i ≥ 1 − (xij1 + xij2) , j1, j2, j ∈ N , j1 < j2, (10)

n∑

j=1

yi1i2j ≤ n − 1, i1, i2 ∈ N , i1 < i2, (11)

n∑

i=1

zj1j2i ≤ n − 1, j1, j2 ∈ N , j1 < j2, (12)

xij = aij, (i, j) ∈ D, (13)
xij, yi1i2j, zj1j2i ∈ {0, 1}, i, j ∈ N , j1, j2 ∈ N , j1 < j2. (14)

The first three constraints correspond, in order, to requiring that in a fixed row,
three consecutive numbers cannot all be 0, three consecutive numbers cannot not
all be 1, and half the numbers in the row must be 1. Constraints (4)–(6) state the
similar logic over individual columns. Constraints (7)–(8) enforce that yi1i2j = 1
if and only if xi1j = xi2j; the right hand side of (7) evaluates to 1 if xi1j = xi2j = 1,
and 0 otherwise, the right hand side of (8) evaluates to 1 if xi1j = xi2j = 0, and 0
otherwise. Constraints (9)–(10) state the similar logic as (7)–(8) over columns in-
stead of rows. Finally, constraints (11)–(12) state that two rows/columns cannot
be identical everywhere, while (13) ensures that we respect the inital puzzle data.

To verify uniqueness of solutions, first solve the model with an arbitrary (linear)
objective function. Denote (if it exists) the optimal puzzle solution by x̄ij, i, j ∈
N . Now consider the objective function to minimize f(x,y, z) =

∑

i,j∈N cijxij,
where cij = x̄ij. Resolve the model with this objective function. If the puzzle
solution is unique, the optimal value f ∗ = n2/2 (the number of ones in the puzzle
solution x̄ij). If the puzzle solution in not unique, there exists a solution that
places a 0 at some point where x̄ij = 1, and hence f ∗ < n2/2.


