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Question 1

(the simplex method)

Consider the following linear program:

minimize 2x1 − 2x2,

subject to −x1 + 2x2 ≥ 2,
−x1 + x2 ≤ 3,

x2 ≥ 0.

a) Solve this problem using phase I (so that you begin with a unit matrix as(2p)
the first basis) and phase II of the simplex method.

Aid: Utilize the identity

(

a b

c d

)−1

=
1

ad− bc

(

d −b
−c a

)

.

b) If an optimal solution exists, use your calculations to decide if it is unique.(1p)
If the problem is unbounded, use your calculations to specify a direction of
unboundedness of the objective value.

Question 2(3p)

(LP duality)

Consider the following complete graph on n nodes:
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Let the set A = { (i, j) ∈ {1, . . . , n} × {1, . . . , n} | i 6= j } be the set of all arcs
in the above graph. Assume given constants cij ≥ 0 for each arc (i, j) ∈ A.
Introduce variables xij for all arcs (i, j) ∈ A and an additional variable s, and
consider the following LP problem:

maximize s, (1)

subject to
n

∑

i=1
i6=j

xij −
n

∑

i=1
i6=j

xji =











−s, j = 1,

0, j ∈ {2, . . . , n− 1},

s, j = n,

0 ≤ xij ≤ cij , (i, j) ∈ A.

i) Interpret the LP (1) in terms of the graph, what does it mean?

ii) Find the LP dual to (1).

iii) Interpret the LP dual problem in terms of the graph.

Hint: The concept of a cut is important when interpreting the dual. A cut
between node i ∈ {1, . . . , n} and node j ∈ {1, . . . , n} corresponds to a set of arcs,
such that by removing these, no path between i and j exists in the graph (the
graph is cut into two parts).

Question 3

(modeling)

Consider K convex polyhedra P 1, P 2, . . . , PK in R
n described by

P k = {x ∈ R
n | Akx ≤ bk }, where Ak ∈ R

mk×n, bk ∈ R
mk for k = 1, . . . , K.

The convex hull of a set P is defined as the smallest convex set containing P and
is denoted by conv(P ).

a) Formulate a linear optimization model for minimizing the objective function(1p)
cT x over the set

conv
(

K
⋂

k=1

P k
)

.

b) Formulate an optimization model for minimizing the objective function cT x(2p)
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over the set

conv
(

K
⋃

k=1

P k
)

.

The model should only contain continuous variables and continuous con-
straints. It does however not need to be linear.

Question 4

(exterior penalty method)

Consider the problem to

minimize f(x) := x2

1
+ x2

2
, (1)

subject to h(x) := x1 + x2 − 1 = 0.

We consider solving (1) by using the external penalty method with the quadratic
penalty function ψ(s) := s2, s ∈ R. The penalty problem is to

minimize
x∈Rn

f(x) + νχ̂S(x),

where χ̂S(x) = ψ(h(x)), for positive, increasing values of the penalty parameter
ν.

a) By applying the KKT conditions to problem (1), determine its optimal(1p)
solution and the corresponding optimal Lagrange multiplier.

b) Apply the exterior penalty method for the problem (1), and show that the(1p)
sequence of (explicitly stated) solutions to the penalty problem converges
to the unique primal solution when ν → ∞.

c) Provide the corresponding sequence of estimates of the Lagrange multiplier,(1p)
and show that it converges to the optimal Lagrange multiplier.
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Question 5

(linear programming: existence of optimal solutions)

Let P := {x ∈ R
n | Ax = b; x ≥ 0n } and V := {v1, . . . ,vk} be the set of

extreme points of P . Further, let C := {x ∈ R
n | Ax = 0m; x ≥ 0n } and

D := {d1, . . . ,dr} be the set of extreme directions of C.

Consider the linear program

minimize z = cTx, (1)

subject to x ∈ P.

The task is to establish the following two basic facts about solutions to the basic
linear program (1).

a) This problem has a finite optimal solution if and only if P is nonempty and(2p)
z is lower bounded on P , that is, if P is nonempty and cTdj ≥ 0 for all
dj ∈ D.

b) If the problem has a finite optimal solution, then there exists an optimal(1p)
solution among the extreme points.

Question 6

(basic facts in optimization)

The below three statements should be assessed. Are they true or false? Provide
an answer together with a short but complete motivation.

a) For the phase I problem of the simplex method (when a BFS is not known(1p)
a priori), the optimal value is always zero.

b) Suppose f ∈ C2. If, at some iteration point x ∈ R
n there exists a solution p(1p)

to the search direction-finding problem of Newton’s method then it defines
a descent direction for f at x.

c) Consider the convex program(1p)

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,
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where the functions f and gi, i = 1, . . . , m, are convex. Suppose that x∗ is
a globally optimal solution to this problem, and that gk(x

∗) < 0 for some
index k ∈ {1, . . . , m}. Then, if we remove constraint k from the problem
its set of optimal solutions is unchanged.

Question 7

(Lagrangian duality)

Consider the strictly convex quadratic optimization problem to

minimize f(x) :=
1

2
(x1 − 5)2 +

1

2
(x2 − 3)2, (1a)

subject to x1 + x2 ≤ 5, (1b)

0 ≤ xj ≤ 3, j = 1, 2. (1c)

a) Establish that the optimal solution to this problem is x∗ = (3, 2)T, by(1p)
utilizing the Karush–Kuhn–Tucker conditions.

b) Do the following:(2p)

[1] Explicitly state its Lagrangian dual function q and its Lagrangian dual
problem, associated with the Lagrangian relaxation of the constraint (1b).

[2] Solve this Lagrangian dual problem and provide the optimal Lagrange
multiplier µ∗. Confirm that this Lagrange multiplier equals the KKT mul-
tiplier corresponding to the inequality (1b), from a).

[3] Prove that strong duality holds, that is, prove that q(µ∗) = f(x∗) holds.
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce variables x+
1(2p)

and x−

1 and let x1 = x+
1 − x−

1 . We also add slack variables s1 and s2.

minimize z = 2x+
1 −2x+

1 −x2

subject to −x+
1 −x+

1 +2x2 −s1 = 2
−x+

1 +x−

1 +x2 +s2 = 3
x+

1 , x−

1 , x2, s1, s2 ≥ 0.

In phase I the artificial variable a is added in the first constraint, s2 is used
as the second basic variable in order to obtain a unit matrix as the first
basis. We obtain the phase I problem

minimize z = a
subject to −x+

1 −x+
1 +2x2 −s1 a = 2

−x+
1 +x−

1 +x2 +s2 = 3
x+

1 , x−

1 , x2, s1, s2, a ≥ 0.

The starting BFS is thus (a, s2)
T. Calculating the vector of reduced costs

for the non-basic variables x+
1 , x−

1 , x2, s1 yields (1,−1,−2, 1)T. Least re-
duced cost implies that x2 is the entering variable. The minimum ratio test
shows that a should leave the basis. We thus have a BFS without artificial
variables, and may proceed with phase II.

We have the basic variables (x2, s2). The vector of reduced costs for the
non-basic variables x+

1 , x−

1 and s1 is (3/2,−3/2,−1/2). We let x−

1 enter the
basis. The minimum ratio test implies that x2 leaves the basis. We now
have x−

1 , s2 as basic variables. The vector of reduced costs for the non-basic
variables x+

1 , x2 and s1 is (0, 3,−2)T. Thus s1 enters the basis. Minimum
ratio implies that s2 leaves basis. We now have x−

1 , s1 as basic variables.
The vector of reduced costs for the non-basic variables x+

1 , x2 and s2 is
(0, 1, 2)T.

Since the reduced costs are all non-negative, the current BFS is optimal.
Returning to the original variables, we obtain (x1, x2) = (−3, 0) as the
optimal solution and −6 as the optimal value.

b) In the optimal BFS, the reduced cost corresponding to x+
1 is zero. There-(1p)

fore, we can let x+
1 enter the basis without changing the objective. We do

not obtain any leaving variable as minimum ratio implies that the prob-
lem is unbounded in that direction. This is simply the increasing x+

1 and
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increasing x−

1 by the same amount (which can be any positive number).
So the problem in standard form does not have a unique optimal solution,
but the problem formulated in the original variables does since all these
solutions correspond to (−3, 0). Replacing one free variable with two pos-
itive variables always implies that each solution is non-unique in the sense
described above.

Question 2(3p)

(LP duality)

i) We interpret the variables xij as the flow from node i to node j of the graph.
The first set of constraints guarantee that the flow going into a node equals
the flow leaving that node (i.e. flow balance) except at node 1 where s
units of flow enters and at node n where s unit of flow leaves. The second
set of constraints imply a limitof flow on all arcs and that flow can not be
negative. To summerize, we push s units of flow into the graph at node 1
and take out s units of flow at node n and we maximize s. This can be
interpreted as maximizing the flow through the graph from node 1 to node
n.

ii) Let vi for i ∈ {1, . . . , n} denote the dual variables corresponding to the
first set of constraints and wij for (i, j) ∈ A denote the dual variables
corresponding to the second set of constraints.. The dual then becomes:

maximize
∑

(i,j)∈A

wijcij

subject to wij − vi + vj ≥ 0, (i, j) ∈ A,
v1 − vn = 1,

wij ≥ 0, (i, j) ∈ A.

iii) We are maximizing with positive costs on wij , therefore we would want
to put them all to zero. Unfortunately, this is not feasible. First, the
constraints imply that if wij = 0 then vi ≤ vj . Second v1 = vn + 1. But by
following a path from node 1 to node n throught the graph we obtain that
v1 ≤ vn . Therefore, all paths that connect 1 with n need to contain an
arc (i, j) where wij = 1 in order to break the chain of inequalities such that
v1 = vn + 1 is possible. This will generate cost cij . If we let cij correspond
to the cost of including the arc (i, j) in a cut, the dual is to find the minimal
cost cut between nodes 1 and n.
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Question 3

(modeling)

a) Since P k is convex for k = 1, . . . , K, we have that(1p)

conv
( K
⋂

k=1

P k

)

=
K
⋂

k=1

P k =
{

x ∈ R
n
∣

∣

∣Ak
x ≤ b

k, k = 1, . . . , K
}

.

Hence, we can write the optimization problem as that to

minimize c
T
x,

subject to Ak
x ≤ b

k, k = 1, . . . , K.

b) Any point in conv
(

⋃K
k=1 P k

)

can be represented as a convex combination(2p)

of points in the individual polyhedra P 1, . . . , P K, i.e.,

x =
K
∑

k=1

λkx
k, with

K
∑

k=1

λk = 1, λk ≥ 0,

where x
k ∈ P k, k = 1, . . . , K. Hence, we can formulate the optimization

problem as that to

minimize c
T
x,

subject to x =
K
∑

k=1

λkx
k,

Ak
x

k ≤ b
k, k = 1, . . . , K,

K
∑

k=1

λk = 1,

λk ≥ 0, k = 1, . . . , K,

where x, x1, . . . , xK and λ1, . . . , λK are the variables in the optimization
model.

(This model can actually be extended to a linear model by the variable
substitution x̄

k = λkx
k.)
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Question 4

(exterior-penalty methods)

a) By applying the KKT conditions on the problem, we obtain the unique(1p)
solution x

∗ = (1/2, 1/2)T and λ∗ = −1.

b) Applying the exterior quadratic penalty method, we get the unconstrained(1p)
problem

min
x∈R2

(

f(x) + νh(x)2
)

= min
x∈R2

(

x2
1 + x2

2 + ν(x1 + x2 − 1)2
)

.

Setting the gradient to zero we obtain

2x1 + 2νx1 + 2νx2 − 2ν = 0,

2x2 + 2νx1 + 2νx2 − 2ν = 0,

with solution xν = ν
1+2ν

(1, 1)T, for ν > 0. Letting ν → ∞ we see that the

sequence xν converges to (1/2, 1/2)T which is the unique optimal solution.

c) We note that the solution xν fulfills ∇f(xν) + [2νh(xν)]∇h(xν) = 0. So a(1p)
Lagrange multiplier estimate comes from λν := 2νh(xν). Insertion from b)
yields λν = −2ν

1+2ν
which tends to λ∗ = −1 when ν → ∞.

Question 5

(linear programming: existence of optimal solutions)

a) This is the first part of Theorem 8.10.(2p)

b) This is the second part of Theorem 8.10.(1p)

Question 6

(basic facts in optimization)

a) False. Any infeasible linear program will result in a phase I problem having(1p)
a positive optimal value.
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b) False. If f is strictly concave, and if at some x ∈ R
n, the Hessian matrix(1p)

∇2f(x) happens to be negative definite, then a search direction is well-
defined, but it defines an ascent direction.

c) False. Consider the linear program to minimize x2 subject to the constraints(1p)
0 ≤ xj ≤ 4, j = 1, 2, and the additional constraint that x1 + x2 ≤ 2. This
problem has the optimal solution set X∗ = {x ∈ R

2 | x1 ∈ [0, 2]; x2 = 0 }.
At the optimal solution x

∗ = (1, 0)T, x1 + x2 < 2 holds. Believing that
this means that the constraint x1 + x2 ≤ 2 therefore is redundant results,
however, in a grave mistake, as the new problem, having the constraints
0 ≤ xj ≤ 4, j = 1, 2, has the optimal set X∗

new = {x ∈ R
2 | x1 ∈ [0, 4]; x2 =

0 }.

Question 7

(Lagrangian duality)

a) At x
∗ = (3, 2)T, the constraints g1(x) := x1 + x2 ≤ 5 and g2(x) := x1 −(1p)

3 ≤ 0 are active. Introducing Lagrange multipliers for them, we study the
equation

∇f(x∗) + µ1∇g1(x
∗) + µ1∇g1(x

∗) = 02

at x
∗ = (3, 2)T, that is,

(

−2
−1

)

+ µ1

(

1
1

)

+ µ2

(

1
0

)

=

(

0
0

)

.

Hence, µ1 = µ2 = 1.

As the KKT conditions are satisfied and the problem stated is convex,
x
∗ = (3, 2)T is indeed a globally optimal solution.

b) With the Lagrangian L(x, µ) := f(x)+µ(x1+x2−5), we obtain the explicit(2p)
Lagrangian dual function as follows:

First, the subproblem solution is that

x1 =















3, if µ ∈ [0, 2],

5 − µ, if µ ∈ [2, 5],

0, if µ ∈ [2,∞),

x2 =







3 − µ, if µ ∈ [0, 3],

0, if µ ∈ [3,∞).



EXAM SOLUTION
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 6

Hence,

q(µ) =



























−1
2
µ2 + µ + 2, if µ ∈ [0, 2],

−µ2 + 3µ, if µ ∈ [2, 3],

−1
2
µ2 + 9

2
, if µ ∈ [3, 5],

−5µ + 17, if µ ∈ [5,∞),

which is to be maximized over non-negative values of µ.

Second, the derivative of q is

q′(µ) =



























−µ + 1, if µ ∈ [0, 2],

−2µ + 3, if µ ∈ [2, 3],

−µ, if µ ∈ [3, 5],

−5, if µ ∈ [5,∞),

whence the optimal solution is found where q′ changes sign, namely at
µ∗ = 1.

This multiplier value is indeed the same as the one found as µ1 in a). The
corresponding primal solution then is x(µ∗) = (3, 2)T. Further, q(µ∗) = 5/2
equals the value of f(x∗), whence strong duality is fulfilled.


