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Question 1

(the simplex method)

Consider the following linear program:

maximize x1 + 2x2

subject to x1 + x2 ≥ 1,
x1 − x2 ≥ −2,

x1 ≥ 0,
x2 ≥ 0.

a) Solve this problem using phase I (so that you begin with a unit matrix as(2p)
the first basis) and phase II of the simplex method.

Aid: utilize the identity

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

.

b) If an optimal solution exists, use your calculations to decide if it unique. If(1p)
the problem is unbounded, use your calculations to specify the direction of
unboundedness.

Question 2(3p)

(modeling)

An airplane has a route that takes it from city 1 to city n by going from city i

to i + 1, where i = 1, . . . , n − 1. Let

• wi be the weight, excluding fuel, of the plane on flight from city i to i + 1,
i = 1, . . . , n − 1,

• ci be the cost of fuel per unit weight at city i, i = 1, . . . , n,

• Ki be the maximum amount of fuel that can be purchased in city i, i =
1, . . . , n,
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• M the maximum weight of fuel that can be loaded into the plane.

Let zi be the variables denoting the total combined weight of the plane, including
fuel, at takeoff from city i, i = 1, . . . , n − 1. Assume that the amount of fuel (in
weight units) needed to fly from city i to i + 1, i = 1, . . . , n − 1, is αizi, where
αi are given positive constants. Formulate a linar program that determines how
much fuel one should buy at each city, such that the total fual cost for completing
the trip is minimized.

Question 3

(interior penalty methods)

Consider the problem to

minimize f(x) := (x1 − 2)4 + (x1 − 2x2)
2,

subject to g(x) := x2

1 − x2 ≤ 0.

We attack this problem with an interior penalty (barrier) method, using the
barrier function φ(s) = −s−1. The penalty problem is to

minimize
x∈Rn

f(x) + νχ̂S(x), (1)

where χ̂S(x) = φ(g(x)), for a sequence of positive, decreasing values of the
penalty parameter ν.

We repeat a general convergence result for the interior penalty method below.

Theorem 1 (convergence of an interior point algorithm) Let the objective func-
tion f : R

n → R and the functions gi, i = 1, . . . , m, defining the inequality
constraints be in C1(Rn). Further assume that the barrier function φ : R− → R+

is in C1 and that φ′(s) ≥ 0 for all s < 0.

Consider a sequence {xk} of points that are stationary for the sequence of prob-
lems (1) with ν = νk, for some positive sequence of penalty parameters {νk}
converging to 0. Assume that limk→+∞ xk = x̂, and that LICQ holds at x̂.
Then, x̂ is a KKT point of the problem at hand.
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In other words,

xk stationary in (1)
xk → x̂ as k → +∞

LICQ holds at x̂







=⇒ x̂ stationary in our problem.

a) Does the above theorem apply to the problem at hand and the selection of(1p)
the penalty function?

b) Implementing the above-mentioned procedure, the first value of the penalty(2p)
parameter was set to ν0 = 10, which is then divided by ten in each iteration,
and the initial problem (1) was solved from the strictly feasible point (0, 1)T.
The algorithm terminated after six iterations with the following results:
x6 ≈ (0.94389, 0.89635)T, and the multiplier estimate [given by ν6φ

′(g(x6))]
µ̂6 ≈ 3.385. Confirm that the vector x6 is close to being a KKT point. Are
the KKT point(s) globally optimal? Why/Why not?

Question 4

(Lagrangian duality)

Consider the quadratic problem

minimize
1

2
xTQx + cTx, (1)

subject to Ax ≥ b,

where Q is a symmetric matrix.

a) Assume that Q is positive definite. Construct the Lagrangian dual problem(1p)
by relaxing all the constraints and show that the dual problem itself is a
quadratic problem.

Hint: An explicit solution to the problem minx∈X L(x, µ) can be found for
each µ.

b) Is the dual function always strictly concave if Q is positive definite? If so,(1p)
provide a proof. If not, provide a counter example.

c) Consider the following properties:(1p)
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i) the primal is a convex problem;

ii) the dual is a convex problem;

iii) the dual objective function q is differentiable;

iv) the duality gap is zero (i.e. q∗ = f ∗).

Which of these hold when Q is positive definite? Which properties do the
primal and dual problems have when Q has a negative eigenvalue? Motivate
your answers!

Question 5(3p)

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.

Question 6(3p)

(LP duality)

Consider the problem to

minimize cTx,

subject to Ax ≥ b (P)

x ≥ 0n,
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where A ∈ R
m×n, b ∈ R

m and c ∈ R
n are given matrices.

Assume that the program (P) has multiple optimal solutions. You are therefore
interested in finding an optimal solution to (P) that has the minimum value with
respect to another linear objective function, eTx. Formulate a linear program
which will yield such an optimal solution, without first solving the problem (P).

Hint: There is a means to describe the set of primal–dual optimal solutions to
(P) as a system of linear inequalities.

Question 7(3p)

(sequential linear programming)

Consider the following nonlinear programming problem: find x∗ ∈ R
n that solves

the problem to

minimize f(x), (1a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (1b)

hj(x) = 0, j = 1, . . . , ℓ, (1c)

where f : R
n → R, gi, and hj : R

n → R are given functions in C1 on R
n.

We are interested in establishing that the classic Sequential Linear Programming
(SLP) subproblem tells us whether an iterate xk ∈ R

n satisfies the KKT con-
ditions or not, thereby establishing a natural termination criterion for the SLP
algorithm.

Given the feasible iterate xk, the SLP subproblem is to

minimize
p

∇f(xk)
Tp, (2a)

subject to gi(xk) + ∇gi(xk)
Tp ≤ 0, i = 1, . . . , m, (2b)

hj(xk) + ∇hj(xk)
Tp = 0, j = 1, . . . , ℓ, (2c)

− 1 ≤ ps ≤ 1, s = 1, . . . , n. (2d)

This subproblem is natural: it is based on a linearization of both the objective
function and the constraint functions, whereby it resembles the Frank–Wolfe
method. The main difference, of course, is that the problem (1) has general and
perhaps nonlinear constraints which in the subproblem (2) therefore are replaced
by first-order Taylor approximations.
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Establish the following statement: the vector xk is a KKT point in the problem
(1) if and only if p = 0n is a globally optimal solution to the SLP subproblem
(2). In other words, the SLP algorithm terminates if and only if xk is a KKT
point in the original problem (1).

Hint: Compare the KKT conditions of (1) and (2).
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We multiply the objective(2p)
by (−1) to obtain a minimization problem, multibly the second constraint
by (−1) to obtain a positive r.h.s., and introduce slack variables s1 and s2.

minimize z = −x1 −2x2

subject to x1 +x2 −s1 = 1
−x1 +x2 +s2 = 2
x1, x2, s1, s2 ≥ 0.

In phase I the artificial variable a is added in the first constraint, s2 is used
as the second basic variable in order to obtain a unit matrix as the first
basis. We obtain the phase I problem

minimize w = a
subject to x1 +x2 −s1 +a = 1

−x1 +x2 +s2 = 2
x1, x2, s1, s2, a ≥ 0.

The starting BFS is thus (a, s2)
T. Calculating the vector of reduced costs for

the non-basic variables x1, x2, s1 yields (−1,−1, 1)T. We can choose between
x1 and x2 as entering variable. We let x2 enter the basis. The minimum
ratio test shows that a should leave the basis. We thus have a BFS without
artificial variables, and may proceed with phase II.

We have the basic variables (x2, s2). The vector of reduced costs for the
non-basic variables x1 and s1 is (1,−2). We let s1 enter the basis. The
minimum ratio test implies that s2 leaves the basis. We now have x2, s1

as basic variables. The vector of reduced costs for the non-basic variables
x1 and s1 is (−1, 2)T. Thus we let x1 enter the basis. We have that the
column corresponding to x1 is B−1N 1 = (−1,−2)T. Hence the problem is
unbounded.

b) The non-basic variable s2 = 0, as we let x1 = µ we have that(1p)

(x2, s1)
T = B−1b − B−1N 1µ = (2, 1)T + (1, 2)Tµ.

Returning to the original variables we have that

(x1, x2)
T = (0, 2)T + (1, 1)Tµ

is the direction of unboundedness. To see that this is correct draw the
problem!
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Question 2(3p)

(modeling) Let xi be the amount of fuel purchased at city i, i = 1, . . . , n. We also
introduce a variable yi to denote the amount of fuel in the plane when leaving
city i. Then we can formulate the problem as

minimize
n
∑

i=1

cixi, (1)

subject to xi ≤ Ki, i = 1, . . . , n (2)

zi − wi = yi, i = 1, . . . , n, (3)

yi ≤ M, i = 1, . . . , n, (4)

xi ≤ Ki, i = 1, . . . , n, (5)

yi ≥ αizi, i = 1, . . . , n, (6)

xi+1 + yi − αizi = yi+1, i = 1, . . . , n − 1, (7)

xi, yi, zi ≥ 0, i = 1, . . . , n. (8)

Question 3

(interior penalty methods)

a) All functions involved are in C1. The conditions on the penalty function(1p)
are fulfilled, since φ′(s) = 1/s2 ≥ 0 for all s < 0. Further, LICQ holds
everywhere. The answer is yes.

b) With the given data, it is clear that the only constraint is (almost) ful-(2p)
filled with equality: (x6)

2
1 − (x6)2 ≈ −0.005422 ≈ 0. We set up the KKT

conditions to see whether it is fulfilled approximately. Indeed, we have the
following corresponding to the system ∇f(x6) + µ̂6∇g(x6) = 02:

(

−6.4094265
3.39524

)

+ 3.385

(

1.88778
−1

)

≈

(

−0.01929
0.01024

)

,

and the right-hand side can be considered near-zero. Since µ̂6 ≥ 0 we
approximately fulfill the KKT conditions.

For the last part, we establish that the problem is convex. The feasible set
clearly is convex, since g is a convex function and the constraint is on the
“≤”-form. The Hessian matrix of f is

(

12(x1 − 2)2 + 2 −4
−4 8

)

,
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which is positive semidefinite everywhere (in fact, positive definite outside
of the region defined by x1 = 2); hence, f is convex on R

2. We conclude
that our problem is convex, and hence the KKT conditions imply global op-
timality. The vector x6 therefore is an approximate global optimal solution
to our problem.

Question 4

(Lagrangian duality)

a) We begin by constructing the Lagrangian function(1p)

L(x, µ) =
1

2
xTQx + cTx + µT(b − Ax).

The dual function is defined as

q(µ) = min
x∈Rn

L(x, µ).

We have that ∇2
x
L(x, µ) = Q which is positive definite, thus the uncon-

strained problem defining q is convex. We solve the sufficient optimality
condition ∇xL(x, µ) = 0 and obtain

Qx + c − ATµ = 0,

x = Q−1(ATµ − c).

Inserting this into the definition of the Lagrangian function we obtain

q(µ) =
1

2
(µTA − cT)Q−1QQ−1(ATµ − c) + (cT

− µA)Q−1(ATµ − c) + µTb

= −
1

2
(µTA − c)Q−1(ATµ − c) + µTb.

The dual problem is minµ≥0 q(µ) which is in the same form as the original
quadratic program after appropriate restructure of terms.

b) The Hessian of the dual is(1p)

∇
2q(µ) = −AQ−1AT.

The dual function is always concave, so we know that all eigenvalues are
non-negative. The question is if Q has strictly positive eigenvalues, does it
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imply that the Hessian to q has strictly positive eigenvalues? The answer
is no. Consider Q = I and

A =







1 0
0 1
−1 −1





 .

We have that

−AAT =







−1 0 1
0 −1 1
1 1 −2





 .

Adding the first rows to the third shows that the rows are linearly depen-
dent, hence −ATA has zero as an eigenvalue. In fact, if A ∈ R

m×n and
m > n then we always obtain 0 as an eigenvalue. A simpler counter-example
is possible with one variable and two constraints, but one of the constraints
will then be redundant.

c) If Q is p.d. then the following holds: Since Q is the Hessian of the primal(1p)
objective, if Q is p.d. then the primal problem is convex. The dual problem
is always a convex problem. The dual function is differentialble since it is
a second degree polynomial. For a convex problem, the dual gap is zero.

If Q has a negative eigenvalue then the primal problem is no longer convex.
Let v be an eigenvector of Q with negative eigenvalue λ < 0. We have that

L(αv, µ) =
1

2
λα2vTv + αcTv + µT(b − αAv) → −∞,

as α → ∞. This implies that q(µ) := −∞ for all µ. Hence the dual gap is
no longer zero unless the primal problem is unbounded.

Question 5(3p)

(optimality conditions)

Farkas’ Lemma is established in Theorem 11.10.
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Question 6(3p)

(LP duality)

We can write the dual problem as

maximize bTy,

subject to ATy ≤ c,

y ≥ 0m.

From weak duality, we know that for any primal feasible x and dual feasible y,
we have cTx ≥ bTy. If cTx ≤ bTy for a primal feasible x and a dual feasible
y, we obtain from strong duality that x is optimal in the primal problem, and
y is optimal in the dual problem. Hence, all solutions x (respectively, y) to the
linear inequality system

Ax ≥ b,

ATy ≤ c,

cTx − bTy ≤ 0,

x ≥ 0n,

y ≥ 0m,

will be optimal solutions to the primal (respectively, dual) problem. To find the
best optimal solution to the primal problem with respect to the linear function
eTx, we can therefore solve the linear program to

minimize eTx,

subject to Ax ≥ b,

ATy ≤ c,

cTx − bTy ≤ 0,

x ≥ 0n,

y ≥ 0m.

Question 7(3p)

(sequential linear programming)

Suppose that p = 0n solves the SLP subproblem (2). When representing the
optimality conditions for this problem, we then note that the bound constraints
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(2d) on p are redundant. Writing down the KKT conditions for p in the problem
(2), we therefore obtain the conditions that

∇f(xk) +
m
∑

i=1

µi∇gi(xk) +
ℓ
∑

j=1

λi∇hi(xk) = 0n, (1a)

µigi(x
∗) = 0, i = 1, . . . , m, (1b)

µ ≥ 0m. (1c)

But this is a statement that x∗ is a KKT point in the original problem.


