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Question 1

(the simplex method)

Consider the following linear program:

minimize z = −2x1 + x2

subject to x1 − 3x2 ≤ β,

0 ≤ x1,

0 ≤ x2 ≤ 2.

a) Solve this problem for β = −3 by using phase I and phase II of the simplex(2p)
method.

[Aid: Utilize the identity
(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

for producing basis inverses.]

b) Without solving any additional linear programs, state, with a clear moti-(1p)
vation, the marginal change in the optimal objective function value when
β is varied from its current value of −3 (i.e., state the partial derivative of
z∗ with respect to β).

Question 2

(implications in theorems)

The following questions consider optimality conditions and theorems related to
them. Your task is to find counter-examples showing that some theorems formu-
lated in terms of a given implication is only valid in that direction, and not in
the reverse direction.

a) An elementary result for linear programs (LPs) says that if the program has(1p)
a finite optimal solution, then there exists an optimal solution among the
extreme points. Show that it is not necessary for an optimal solution to an
LP to be an extreme point by constructing a specific LP counter-example.1

b) An optimality condition for twice differentiable functions is that if ∇f(x∗) =(1p)

1The problem formulation in the exam was unclear, and has been modified here.
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0 and also ∇2f(x∗) is positive definite, then x
∗ is a strict local minimum

of f on R
n. By presenting a counter-example, show that the reverse impli-

cation does not hold true in general

c) Show, by presenting a specific problem of the form min
x∈S f(x), where f(1p)

is differentiable and S is convex, that the variational inequality is not a
sufficient condition for local optimality (it is only a necessary condition).
(Recall that the variational inequality considers scalar products of the gra-
dient of f at the point of interest and vectors from the point into the set.)

Question 3(3p)

(modelling)

A cylindrical heat storage unit of diameter D and height H is to be constructed.
The heat loss due to convection is hc = kcA(T − TO) and due to radiation is
hr = krA(T 4 − T 4

O), where kc and kr are constants, A is the surface area of the
heat storage, T is the temperature inside the heat storage and TO is the outside
temperature. The heat energy stored in the unit is given by Q = kV (T − TO),
where k is a constant and V is the volume of the heat storage.

Formulate an optimization problem for finding the dimensions of a heat storage
such that the heat loss is minimized, at least a given constant Q′ of heat is
stored, and the storage fits inside a sphere of radius R. Your variables, constants,
constraints and objective function should be clearly defined.

Is your model best described as a linear programming, nonlinear programming
or mixed integer programming model?

Question 4

(linear programming duality)

Consider the linear programming problem to

minimize c
T
x,

subject to Ax = b,

l ≤ x ≤ u,

where A ∈ R
m×n, c, l, u, and x are vectors in R

n, and b ∈ R
m.
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a) Give the LP dual of this problem.(1p)

b) Prove that this LP dual always has feasible solutions.(1p)

c) What can you conclude if the primal problem has feasible solutions?(1p)

Question 5

(Newton’s algorithm)

An engineer has decided to verify numerically that the exponential function x 7→
exp(x) = ex grows faster than any polynomial. In order to do so he/she studies
the optimization problem to

minimize f(x) = xα − exp(x), (1)

where α is the highest power of the polynomial (we assume it is an even, positive
integer number). The engineer uses a Newton method (with unit steps!) to
solve the problem. He/she argues that if the exponential function grows faster
than any polynomial, then the sequence {xk} generated by the method should
converge to infinity, because the objective function f can be decreased indefinitely
by increasing the value of x.

a) State the Newton iteration explicitly for the given problem (1).(1p)

b) Construct a numerical example (that is, choose a value of α ∈ {2, 4, . . .}(1p)
and a starting point of the Newton algorithm) illustrating the engineer’s
error in reasoning.

c) Find the error in the engineer’s reasoning and formally explain it.(1p)

Question 6(3p)

(fundamental theorem of global optimality)

Consider the problem to

minimize f(x), (1a)

subject to x ∈ S, (1b)
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where S ⊆ R
n is a nonempty set and f : R

n → R ∪ {+∞} is a given function.

Establish the validity of the following theorem.

Consider the problem (1), where S is a convex set and f is convex on S. Then,
every local minimum of f over S is also a global minimum.

Question 7

(optimality conditions)

Consider the problem to project (according to the standard Euclidean distance)
the vector z = (2, 3/2)T onto the set S specified by the constraints that xj ≥ 0
for j = 1, 2, and that x1 + x2 ≤ 3/2.

a) Describe the appropriate optimization problem to be solved in order to find(1p)
this projection, and establish that it is a convex problem with a strictly
convex objective function.

b) State the KKT conditions corresponding to a feasible vector x
∗ being sta-(1p)

tionary in the problem in a). Establish whether or not the KKT conditions
are necessary for a local minimum at x

∗, and also whether the KKT con-
ditions are sufficient for a feasible vector x

∗ satisfying the KKT conditions
to be a global minimum of the same problem.

c) Establish whether or not the vector x = (1, 1/2)T is the projection of z(1p)
onto the set S.

Good luck!
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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. In the first constraint we(2p)
change sign and subtract a non-negative slack (surplus) variable. The upper
bound on x2 is considered as a linear constraint, and in this constraint a
second slack variable is added. We get

minimize z =−2x1 + x2,

subject to −x1 +3x2 − s1 = 3,

x2 + s2 = 2,

x1, x2, s1, s2 ≥ 0.

In phase I, an artifical variable, a ≥ 0 is added in the first constraint. s2 is
used as the second basic variable. The phase I problem is

minimize w = a,

subject to −x1 +3x2 − s1 + a = 3,

x2 + s2 = 2,

x1, x2, s1, s2, a ≥ 0,

and our starting BFS is (a, s2)
T. A calculation of the vector of reduced

costs for the non-basic variables x1, x2 and s1 gives (1,−3, 1)T, and hence,
x2 is chosen as the incoming variable. The minimum ratio test shows that
a should leave the basis. Since there are no artifical variables left in the
basis we have w = 0 which is optimal in the phase I problem and which
corresponds to a BFS to the original problem. We return to the original
problem using B = (x2, s2)

T, N = (x1, s1). The vector of reduced costs are
calculated to be (−5/3, 1/3)T and therefore x1 is chosen as the incoming
variable. The minimum ratio test shows that s2 should be removed from
the basis. Updating B to (x2, x1)

T and N to (s2, s1)
T and calculating the

new reduced costs shows that c̃N = (5, 2) > 0 and hence the current basis is
optimal. We have B−1b = (2, 3), i.e., x∗ = (x1, x2)

∗ = (3, 2), and z∗ = −4.

b) From strong duality we have z∗ = cTx∗ = bTy∗ where y∗ is the vector of(1p)
optimal dual variables. The optimal basis will not change for sufficiently
small changes of β since c̃N > 0 implies that the optimal basis is unique at
the current point. Therefore we have that ∂z

∂β
equals the value of the dual

variable corresponding to the first con straint. The expression for the dual
variables is yT = cT

BB−1 (which, if one does not remember is clear from the
fact that cTx∗ = cT

Bx∗

B = cT

BB−1b = bTy∗). We have cT

BB−1 = (2,−5)T,
and therefore the marginal change of z∗ is twice the change of β.
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Question 2

(implications in theorems)

a) Any LP with c = 0 would do (as long as the feasible polyhedron has(1p)
a non-empty relative interior). Here all feasible points are optimal, but
not all of them are extreme points. Another simple example is given by
min x1 s.t. 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. Here, (0, 1

2
)T is an optimal solution,

but it is not extreme since, e.g., (0, 1

2
)T = 1

2
(0, 0)T + 1

2
(0, 1)T.

b) Let n = 1 and f(x) = x4. Here, x∗ = 0 is clearly a strict local minimum(1p)
(and also the global minimum), however the hessian ∇2f(x∗) is not positive
definite but only positive semi-definite (∇2f(x∗) = 0 ).

c) Let, e.g., f(x) = −x2 and S = [0, 1] for a minimization problem. Here,(1p)
x = 0 fulfills the variational inequality (∇f(x∗)T(x − x∗) ≥ 0, ∀x ∈ S),
but it is not locally optimal.

Question 3

(modeling)

The model uses the following constants: kc, kr, k, T, TO. The model uses the
following variables: D - cylinder diameter, H - cylinder height. The surface area
of the cylinder can be expressed as

HπD + 2π
(

D

2

)2

= πHD +
π

2
D2.

The volume of the cylinder can be expressed as

Hπ
(

D

2

)2

=
π

2
HD2.

To fit the cylinder inside a sphere, we should place the center of the cylinder at
the center of the sphere. The point inside the cylinder most distant from the

center is then
√

(H/2)2 + (D/2)2 length units away. This must thus be smaller
than the radius R. The full model is then to

minimize
(

kc(T − TO) + kr(T
4 − T 4

O)
)

(

πHD +
π

2
D2

)
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subject to k(T − TO)
π

2
HD2 ≥ Q′,

√

(H/2)2 + (D/2)2 ≤ R,

H, D ≥ 0.

The model is a nonlinear programming model.

Question 4

(linear programming duality)

a) The linear programming dual problem is to(1p)

maximize bTα + lTβ − uTγ,

subject to ATα + β − γ = c,

β, γ ≥ 0n,

where α ∈ R
m is the vector of dual variables for the linear constrants, and

β ∈ R
n and γ ∈ R

n respectively are the vector of dual variables for the
lower and upper bounds on x.

b) Set, for example, α ∈ 0m. Then, study the sign of each element of the(1p)
vector c: if cj = 0, set βj = γj = 0; if cj > 0, set βj = cj and γj = 0;
finally, if if cj < 0, set βj = 0 and γj = −cj . This then constitutes a feasible
solution to the linear programming dual problem.

c) The conclusion is that the primal problem has a finite optimal solution; see(1p)
Theorem 10.6, for example.

Question 5

(Newton’s method)

a) Newton’s equation:(1p)

xk+1 = xk −
αxα−1 − exp(x)

α(α − 1)xα−2 − exp(x)
.



EXAM SOLUTION
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 4

b) Probably the simplest counter-example is obtained by taking x0 = 1, α = 2.(1p)
These initial values cause the Newton’s method to generate an oscillating
sequence x2k−1 = 0, x2k = 1, k = 1, 2, . . . .

c) The objective function of the problem is not convex in general [may be(1p)
verified by analyzing the sign of the Hessian α(α− 1)xα−2 − exp(x)]. Since
the convergence of the Newton method is local in nature, the method is
most likely to converge to the nearest local minimum (or maximum if the
hessian is negative definite). The engineer thus wrongly assumes the global
convergence of the Newton method on non convex functions.

Question 6(3p)

(fundamental theorem of global optimality)

See Theorem 4.3 in The Book.

Question 7

(optimality conditions)

a) With z = (2, 3/2)T, the appropriate problem to solve is that to(1p)

minimize f(x) :=
1

2
‖x − z‖2,

subject to x1 + x2 ≤ 3/2,

xj ≥ 0, j = 1, 2.

The objective function is strictly convex: ∇f(x) = x−z and ∇2f(x) = In,
where In is the identity matrix, so the Hessian ∇2f(x) matrix is positive
definite everywhere. The problem is a convex one, since also the feasible
set is convex—it is indeed a polyhedron.

b) Changing sign of the second group of constraints, and introducing the La-(1p)
grange multiplier vector µ ∈ R

3, we obtain the KKT conditions for a fea-
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sible vector x∗ as follows:

x∗ − z + µ1

(

1
1

)

+ µ2

(

−1
0

)

+ µ3

(

0
−1

)

=

(

0
0

)

,

µ1(x
∗

1 + x∗

2 − 3/2) = 0,

µ2x
∗

1 = 0,

µ3x
∗

2 = 0.

As the constraints of the problem in a) are affine, the Abadie constraint
qualification (CQ) is satisfied; therefore, the KKT conditions are necessary
for a local minimum at x∗.

As was established in a) above, the optimization problem is a convex one.
The above KKT conditions then are sufficient for a feasible vector x∗ to be
a global minimum of the above problem.

c) At the given vector x = (1, 1/2)T, it is clear that at any KKT point, µ2 =(1p)
µ3 = 0 must hold, while complementarity leaves µ1 free. The remaining
linear equation becomes:

µ1

(

1
1

)

=

(

1
1

)

;

hence, µ1 = 1. The KKT conditions are satisfied; the vector µ∗ = (1, 0, 0)T

is a vector of Lagrange multipliers, corresponding to the optimal solution
x∗ = (1, 1/2)T.


