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Question 1

(the simplex method)

Consider the following linear program:

minimize z = 2x1 − x2 + x3,

subject to x1 +2x2 − x3 ≤ 7,

−2x1 + x2 − 3x3 ≤ −3,

x1, x2, x3 ≥ 0.

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

for producing basis inverses.]

b) If the problem in a) is infeasible or unbounded, perform a small modification(1p)
of the cost vector and/or the right-hand side vector such that the modified
problem will have at least one optimal solution. If the problem has an
optimal solution, state for which values of the first component (the one
which is 7 now) of the right-hand side vector the optimal basis remains
being the optimal one.

Question 2(3p)

(modeling)

A wind power company has n wind turbines located in an area. In order to
perform maintenance, m maintenance units are located in different depots. Each
day, the management obtains a list of maintenance activities to be performed at
the different wind turbines. The data can be transformed into work hours that a
crew has to spend at the site. Let di be the number of maintenance hours that
must be spent on repairing turbine i. If the repairs will not be completed, the
turbine can not run and will generate a loss of ei SEK. Each crew can work a
maximum number of 8 hours, but in order to perform repairs at a site, the crew
has to travel to the site and return to the depot afterwards. Let cij be the time
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that crew j has to travel in order to reach turbine i. Since there only is a limited
space in each turbine, a maximum of 2 crews may work on the same turbine
during the day.

Create a linear mixed integer programming model (that is, a model which be-
comes a linear programming (LP) problem if any integrality requirements were to
be removed) that schedules the maintenance work of the maintenance units at the
turbines during one day so that the cost of the production losses are minimized.

Question 3(3p)

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.

Question 4

(exterior penalty method)

Consider the following problem:

minimize f(x) :=
1

2
(x1)

2
− x1x2 + (x2)

2,

subject to x1 + x2 − 1 = 0.

a) By applying the KKT conditions to this problem, establish its (unique)(1p)
exact primal–dual solution.
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b) Apply the standard exterior quadratic penalty method for this problem, and(1p)
show that the sequence of (explicitly stated) subproblem solutions converges
to the unique primal solution.

c) From the theory of exterior penalty methods provide the corresponding(1p)
sequence of estimates of the Lagrange multiplier, and show that it converges
to the dual solution provided in a).

Question 5

(topics in convexity)

Let there be given a function f : R
n → R.

a) Let f be once continuously differentiable (that is, f ∈ C1) on R
n. Establish(2p)

the following equivalence relation:

f is convex on R
n
⇐⇒ f(y) ≥ f(x) + ∇f(x)T(y − x), for all x, y ∈ R

n.

b) Let f be twice continuously differentiable (that is, f ∈ C2) on R
n. Establish(1p)

the following equivalence relation:

f is convex on R
n
⇐⇒ ∇

2f(x) is positive semi-definite on R
n .

Question 6(3p)

(Lagrangian duality)

Consider the problem to

minimize −x1 − 0.5x2,
subject to (x1 − 1)2 + (x2 − 1)2

≥ 1,
x2

1
+ x2

2
≤ 1.

Formulate the Lagrangian dual problem. Can we say something about convexity
and differentiability of the dual problem? Let q be the Lagrangian dual function.
Evaluate q(1, 1/2) and f(0, 1); what does this say about the optimal value of the
primal problem f ∗? Solve the primal problem graphically. Does this problem
have a dual gap (i.e. is f ∗ = q∗) ? Motivate you answer!.



EXAM
TMA947/MMG620 — OPTIMIZATION, BASIC COURSE 4

Question 7

(true or false claims in optimization)

For each of the following three claims, decide whether it is true or not. Motivate
your answers! (Unless there is a clear motivation, no credits will be given.)

a) Consider the linear program(1p)

minimize z = c1x1 + c2x2 + c3x3,

subject to a11x1 + a12x2 + a13x3 ≤ b1,

a21x1 + a22x2 + a23x3 ≤ b2,

a31x1 + a32x2 + a33x3 ≤ b3,

x1, x2, x3 ≥ 0,

where aij ∈ R, i = 1, 2, 3; j = 1, 2, 3 and bj ∈ R, j = 1, 2, 3 are such that
there is at least one feasible point. Suppose that a fourth variable x4 ≥ 0
is added to the problem with cost coefficient c4 and constraint coefficients
aj4, j = 1, 2, 3.

Claim: No matter the values of c4 and aj4, j = 1, 2, 3, the dual to the
extended problem will never be unbounded.

b) Claim: The polyhedron in R
3 defined by the following system(1p)

x1 ≤ 1,

2x2 ≤ 2,

2x1 +2x2 + 2x3 ≤ 7,

x3 ≤ 1,

x1 + x2 + x3 ≤ 3,

has an extreme point at (1, 1, 1)T.

c) Consider the non-linear program(1p)

minimize f(x),

subject to g(x) ≤ 0m.

Suppose that there is a feasible point x∗ fulfilling the KKT conditions, that
a CQ is fulfilled at x∗ and that there is a feasible point y arbitrarily close
to x∗ with f(y) > f(x∗).

Claim: x∗ is a local minimum to the problem.
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Good luck!
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Question 1

(the simplex method)

a) To transform the problem to standard form, first change the sign on the(2p)
second contraint and then add a non-negative slack variable to the first
constraint and subtract a non-negative slack (surplus) variable from the
second. We get

minimize z =2x1 − x2 + x3,

subject to x1 +2x2 − x3 + s1 = 7,

2x1 − x2 + 3x3 −s2 = 3,

x1, x2 x3, s1, s2 ≥ 0.

Now start phase 1 using an artificial variable a ≥ 0 added in the second
constraint. s1 can be used as a second basic variable.

minimize w = a,

subject to x1 +2x2 − x3 + s1 = 7,

2x1 − x2 +3x3 −s2 + a = 3,

x1, x2 x3, s1, s2, a ≥ 0.

We start with the BFS given by (s1, a)T. In the first iteration of the simplex
algorithm, x3 has the least reduced cost (−3) and is chosen as the incoming
variable. The minimum ratio test then shows that a should leave the basis.
By updating the basis and computing the reduced costs we see that we are
now optimal with w∗ = 0 and we proceed to phase 2.

The BFS is given by xB = (s1, x3)
T, xN = (x1, x2, s2)

T and the reduced
costs with the phase 2 cost vector are c̃

T

(x1,x2,s2) = (4
3
,−2

3
, 1

3
). The reduced

cost is negative for x2 which is the only eligable incoming variable. B
−1

b =
(8, 1)T and B

−1
Nx2

= (5
3
,−1

3
)T, so the minimum ratio test shows that s1

should leave the basis. Updating the basis and computing the new reduced
costs gives c̃

T

(x1,s1,s2)
= (2, 2

5
, 1

5
) ≥ 0 and thus the optimality condition is

fulfilled for the current basis. We have x
∗
B = (24

5
, 13

5
)T, or in the original

variables, x
∗ = (x1, x2, x3)

∗ = (0, 24
5
, 13

5
)T, with the optimal value z∗ = −11

5
.

b) The reduced costs are not affected by the right-hand-side vector, so the(1p)
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only thing that has to be checked is when the current basis stays feasible.

B
−1

b ≥ 0 ⇔
1

3

(

3 1
0 1

)(

b1

3

)

≥ 0 ⇔







b1 + 1≥ 0

3 ≥ 0
⇔ b1 ≥ −1

Thus, the current basis stays optimal for all b1 ≥ −1.

Question 2(3p)

(modeling)

Introduce the variables xij = number of workhours that the crew j spends in
turbine i,

yij =







1, crew j performs maintenance at turbine i,

0, otherwise;

zi =







1, the turbine i is not operational,

0, otherwise.

The model is

minimize
n∑

i=1

ziei

subject to di −
m∑

j=1

xij ≤ dizi, i ∈ {1, . . . , n},

xij ≤ djyij, i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
n∑

i=1

yij ≤ 2, i ∈ {1, . . . , n}, j ∈ {1, . . . , m},

n∑

i=1

xij +
n∑

i=1

2cijyij ≤ 8, j ∈ {1, . . . , m},

xij ≥ 0, yij, zi ∈ {0, 1} i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.
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Question 3

(optimality conditions)

See The Book, Theorem 10.10.

Question 4

(exterior penalty method)

a) Direct application of the KKT conditions yield that x
∗ = (3

5
, 2

5
)T and λ∗ =(1p)

−1/5 uniquely.

b) Letting the penalty parameter be ν > 0, it follows that xν = ν
1+5ν

(3, 2)T.(1p)
Clearly, as ν → ∞ convergence to the optimal primal–dual solution follows.

c) From the stationarity conditions of the penalty function x 7→ f(x)+λh(x)+(1p)
ν|h(x)|2 follow that xν fulfills ∇f(xν)+[2νh(xν)]∇h(xν) = 02, and hence a
proper Lagrange multiplier estimate comes out as λν := 2νh(xν). Insertion
from b) yields λν = −ν

1+5ν
, which tends to λ∗ = −1

5
as ν → ∞.

Question 5

(topics in convexity)

a) See Theorem 3.40.(2p)

b) See Theorem 3.42.(1p)

Question 6(3p)

(Lagrangian dual)

L(x, µ) = −x1 − 1/2x2 + µ1(x
2
1 + x2

2 − 1) + µ2(1 − (x1 − 1)2 − (x2 − 1)2).
The dual function is q(µ) = minx(L(x, µ)) = minx1

(−x1 + µ1x
2
1 − µ2(x1 − 1)2)

︸ ︷︷ ︸

q1(x1)

+ minx2
(−1/2x1 + µ1x

2
1 − µ2(x1 − 1)2) + µ2

︸ ︷︷ ︸

q2(x2)

.
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dq1

dx1

= −1+2µ1x1−2µ2(x1−1) and d2q1

dx2

1

= 2(µ1−µ2). We notice that q1 is strictly

convex for µ1 > µ2 and strictly concave for µ1 < µ2 and linear for µ1 = µ2. For
µ1 > µ2 the minimum is attained attained at x1 = 1−2µ2

2(µ1−µ2)
and is −∞ for µ1 < µ2.

Similarly for q2 we obtain x2 = 1/2−2µ2

2(µ1−µ2)
. Simplifying and inserting into L yields

q(µ) =
8(3−2µ2)µ2−16µ2

1
−5

16(µ1−µ2)
if µ1 > µ2. If µ1 = µ2 the derivatives of q1 and q2 can

not be zero simultaneosly. We therefore have q1(µ) = −∞ or q2(µ) = −∞. We
therefore have q(µ) = −∞ if µ1 ≤ µ2.

The dual problem can be formulated as maxµ≥0 q(µ). The dual problem is always
convex; in the pressent case it is also differentiable.

q(1, 1/2) = −13/8 and f(0, 1) = −1/2; we can therefore conclude (by weak
duality) that −13/8 ≤ f ∗ ≤ −1/2.

Drawing the feasible region together with the linear objective gives the optimal
solution x∗ = (1, 0), f ∗ = −1.

The problem is non-convex, hence a dual gap can exist. Assume there is no
duality gap, then according to Theorem 6.7 L(x∗, µ∗) = minx L(x, µ∗). If µ∗ is
optimal then µ∗

1 > µ∗
2. Since the function L(·, µ) is strictly convex, the minimum

is obtained at ∇xL(·, µ) = 0. Therefore 1 = 1−2µ2

2(µ1−µ2)
and 0 = 1/2−2µ2

2(µ1−µ2)
. This yields

µ2 = 1/4 and µ1 = 1/2. Since q(1/2, 1/4) = −1 no duality gap exists.

Question 7

(true or false claims in optimization)

a) True. The important implication is that if a problem is unbounded, then(1p)
its dual must be infeasible. The adding of an extra variable relaxes the
original problem. Since there is a feasible point to the original problem, the
extended problem will also have a feasible solution (e.g., by setting x4 = 0).
If the dual to the extended problem is unbounded the primal problem (dual
to the dual) must be infeasible. This is not the case and the claim is proved.

b) True. The equality subsystem at (1, 1, 1)T consists of all rows but the third,(1p)
so

Ã =








1 0 0
0 2 0
0 0 1
1 1 1







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The rank of Ã is 3 since the first three rows are linearly independent. So,
rank(Ã) = n which implies that the proposed point is an extreme point (in
this case corresponding to a degenerate basis).

c) False. A counterexample in R
2 is given by the problem defined by f(x) =(1p)

x2, g(x) = −x2
1 − x2 at the point x

∗ = (0, 0)T. The conditions are fulfilled,
but all balls around x

∗ contain points with smaller objective values.


