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Question 1

(the simplex method)

Consider the following linear program:

minimize z = −x1 + x2,

subject to −x1 + 2x2 ≥ 1/2,

−2x1 − 2x2 ≥ 1,

x1 ∈ R (free),

x2 ≥ 0.

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity

(

a b
c d

)

−1

=
1

ad− bc

(

d −b
−c a

)

for producing basis inverses.]

b) Without solving the dual to the problem above, motivate clearly whether(1p)
there are no optimal dual solutions, a unique optimal dual solution (if so,
present it) or multiple optimal dual solutions (if so, present at least two of
them).
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Question 2(3p)

(convergence of an exterior penalty method)

Let us consider a general optimization problem:

minimize f(x),

subject to x ∈ S,
(1)

where S ⊂ R
n is a non-empty, closed set and f : R

n → R is a given differentiable
function. We assume that the feasible set S of the optimization problem (1) is
given by the system of inequality and equality constraints:

S = {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , ` },
(2)

where gi ∈ C(Rn), i = 1, . . . , m, hj ∈ C(Rn), j = 1, . . . , `.

We choose a function ψ : R → R+ such that ψ(s) = 0 if and only if s = 0 (typical
examples of ψ(·) are ψ1(s) = |s|, or ψ2(s) = s2), and introduce the function

νχ̌S(x) := ν

( m
∑

i=1

ψ
(

max{0, gi(x)}
)

+
∑̀

j=1

ψ
(

hj(x)
)

)

, (3)

where the real number ν > 0 is called a penalty parameter.

We assume that for every ν > 0 the approximating optimization problem to

minimize f(x) + νχ̌S(x) (4)

has at least one optimal solution x∗

ν.

We then have the following result.

Theorem 1 Assume that the original constrained problem (1) possesses optimal
solutions. Then, every limit point of the sequence {x∗

ν}, ν → +∞, of globally
optimal solutions to (4) is globally optimal in the problem (1).

Prove this theorem.
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Question 3(3p)

(applications of Weierstrass’ Theorem)

For each of the following functions fi, i = 1, 2, 3, motivate carefully if a global
minimum is attained on the corresponding set Si, i = 1, 2, 3.

(1) f1(x) = −e−
(x1+2)2+(x2+1)2

10 + 10e−
(x1+2)2+(x2+1)2

100 +
1

50

(

(x1 + 2)2 + (x2 + 1)2
)

+
1

10
x1,

S1 = R
2.

(2) f2(x) =

{

− 1
x2
1+(x2−1)2+2x2

3
+ x2

3, if x1 > 0,

0, if x1 ≤ 0,

S2 =
{

x ∈ R
3 | −5 ≤ xi ≤ 5, ∀i

}

.

(3) f3(x) =
(

x1 + x2
2

)2
+ x1 + 3x2 + 200,

S3 = R
2.

Question 4

(modeling)

The government has assigned you to lead their aid program. They are willing
to spend 1 % of the national gross product of b SEK. They are considering to
give aid to a set of countries N = {1, . . . , N}. The aim of the aid program
is to increase the Human Development Index (HDI) in the countries, which is
calculated by measuring the three factors education per capita, life expectancy
and gross national product per capita (GDP). We may therefore consider the
HDI index as a measure of development per capita in a country.

For all countries j ∈ N let aj denote the current value of the HDI index, cj the
increase of HDI per SEK given as aid to the country and pj the population size.
There are only a limited number of aid programs in each of the countries. This
puts a limit on the maximal aid that a country can receive, let dj SEK denote
the maximal aid country j can receive.

a) Write a linear program for distributing aid that maximizes the total HDI(1p)
in the region formed by all the countries considered.
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b) You are given new directives from the government: they think that the aid(1p)
should be focused on a maximal number of M countries. Introduce integer
variables in your model (i.e., write an integer linear programming model)
in order to accommodate this demand.

c) There has recently been some discussions concerning the aid to countries(1p)
with a high HDI. The government wants you to write a new model that
maximizes the minimal HDI among the countries. Extend your model in
a) to an LP model that accommodates this demand.

Question 5(3p)

(the Frank–Wolfe method)

Consider the optimization problem to

minimize f(x) := x2
1 + x1x2 + 2x2

2 − 10x1 − 4x2,
subject to x1 + x2 ≤ 3,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

Start at the point x0 = (0, 0)T and perform two iterations of the Frank–Wolfe
method. (Recall that the Frank–Wolfe method starts at some feasible point.
Given an iteration k and feasible iterate xk it produces a feasible search direction
pk through the minimization of the first-order Taylor expansson of f at xk. The
next iterate is found through an exact line search in f along the search direction,
such that the resulting vector is also feasible.) Write out the upper and lower
bounds for the optimal objective function value that the algorithm generates in
each iteration, and give a theoretical motivation to them. If an optimum is found,
state so, and motivate why it is an optimum.

Question 6(3p)

(convex problem)

Consider the problem to

minimize f(x) := − ln(x1 + x2) + x3 ln x3,

subject to gi(x) := −xi + 1 ≤ 0, i = 1, 2, 3,

g4(x) := −x1 + 2x2
2 + 4x2

3 − 10 ≤ 0.
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Establish whether this is a convex problem or not.

[Note: By “convex problem” we refer to the property that the objective function
is convex in a minimization problem, and that the feasible set is a convex set.]

Question 7(3p)

(linear programming duality)

Consider the following two polyhedral sets corresponding to the feasible sets of
the standard pair of primal–dual linear programs:

X = {x ∈ R
n | Ax ≥ b, x ≥ 0n },

Y = {y ∈ R
m | ATy ≤ c, y ≥ 0m }.

Prove that if both X and Y are non-empty, then at least one of them must be
unbounded.

[Remark: This result can in fact be strengthened to the following: If at least one
of the sets X and Y is non-empty, then at least one of them is non-empty and
unbounded; this result is due to Clark (1961).]

Good luck!
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Question 1

(the simplex method)

a) To transform the problem to standard form, the free variable x1 must be(2p)
replaced by the non-negative variables x+

1 and x−
1 such that x1 := x+

1 −x−
1 .

A non-negative slack variable s1 in the first constraint and a non-negative
slack variable s2 in the second constrained must be subtracted.

A BFS cannot be found directly, hence begin with phase 1 with artificial
variables a1 ≥ 0 added in the first constraint and a2 ≥ 0 in the second
constraint. The objective is to minimize w = a1 + a2. Start with the BFS
given by (a1, a2)

T. In the first iteration of the simplex algorithm, x−
1 is the

only variable with a negative reduced cost (−3), and is therefore the only
eligable incoming variable. The minimum ratio test shows that either a1 or
a2 can be removed from the basis. We choose a1 as the outgoing variable and
update the basic variables to xB = (x−

1 , a2)
T. By computing the reduced

costs, we see that s1 is the only non-basic variable with negative reduced
cost (−2) and s1 is chosen as incoming variable. The minimum ratio test
shows that a2 should leave the basis. By updating the basis and computing
the reduced costs we see that we are now optimal with w∗ = 0 and we
proceed to phase 2.

The BFS is given by xB = (x−
1 , s1)

T, xN = (x+
1 , x2, s2)

T and the reduced
costs with the phase 2 cost vector c = (−1, 1, 1,−1,−1)T are

c̃T

(x+

1
,x2,s2)

= (0, 2, 1/2) ≥ 03,

and thus the optimality condition is fulfilled for the current basis. We have
x∗

B = (1/2, 0)T, or in the original variables, x∗ = (x1, x2)
∗ = (−1/2, 0)T,

with the optimal value z∗ = 1/2.

b) Since there is an optimal solution to the problem, Strong duality guar-(1p)
antees the existence of a dual optimal solution. The expression for this
is y∗T = cT

BB−1 = (0, 1/2). However, the optimal basis is degenerate
and it is possible to replace the zero-valued basic variable s2 with a non-
basic variable as long as the basis matrix B still has linear independent
columns. We see that it is possible to replace s1 with s2 which gives
us y∗T = cT

BB−1 = (2/3, 1/6) or to replace s1 with x2 which gives us
y∗T = cT

BB−1 = (1, 0). Also, any convex combination between these three
dual optimal solution is also dual optimal.
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Question 2(3p)

(convergence of an exterior penalty method)

See Theorem 13.3 in The Book.

Question 3

(Weierstrass)

a) Yes it does. The function is continuous on a closed set. Also, we observe(1p)
that the function is weakly coercice, i.e., when ||x|| → ∞, then f1(x) → ∞.
Weierstrass’ theorem now guarantees that a global minimum exists.

b) No it does not. The function is not lower semi-continuous, so we cannot(1p)
invoke Weierstrass’ thereom. We observe that along the arc x = (t, 1, 0)T,
where t → 0+, f2(x) → −∞.

c) No it does not. The function is not weakly coercive, so we cannot invoke(1p)
Weierstrass theorem. We observe that along the arc x = (t,−√−t)T, where
t → −∞, f3(x) → −∞.

Question 4

(modeling)

a) Introduce the variables:(1p)
xi : SEK aid given to country i.

The objective is to

max

∑
i∈N (ai + cixi)pi∑

i∈N pi

,

and the constraints are

∑

i∈N

xi ≤ 0.01b, (1)

0 ≤ xi ≤ di, ∀i ∈ N . (2)
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b) Introduce the binary variables(1p)
yi : with value one if country i receives aid, zero otherwise.

Modify the constraints (2) into

0 ≤ xi ≤ diyi, ∀i ∈ N . (3)

Introduce an additional constraint

∑

i∈N

yi ≤ M. (4)

c) Introduce the variable(1p)
w : minimal HDI of the countries considered.

Introduce the constraints

ai + cixi ≥ w ∀i ∈ N . (5)

Change the objective function into

max w.

Question 5(3p)

(the Frank–Wolfe method)

Iteration 1: x0 = (0, 0)T, f(x0) = 0. It is feasible, so we get an upper bound:
[LBD, UBD] = (− inf, 0]. We have that ∇f(x0) = (−10,−4)T. Solve the LP
miny∈X ∇f(x0)

Ty. The solution is obtained at y0 = (2, 1)T. The search direction
is p0 = y0 − x0 = (2, 1)T. Since f is convex, g(y) := f(x0) + ∇f(x0)

T(y −
x0) ≤ f(y) for all y ∈ R

2. The LP problem miny∈X g(y) is a relaxation of
the original problem, hence an optimal objective value gives a lower bound. The
objective value is f(x0)+∇f(x0)

T(y0−x0) = 0+(−10,−4)(2, 1)T = −24. Hence
[LBD, UBD] = [−24, 0]. Line search: φ(α) = f(x0 + αp0) = f((2α, α)) = . . . =
8α2 − 24α. φ′(α) = 16α − 24 = 0. α = 24/16 > 1 Take a unit step: α = 1.
Hence, the next point is x1 = (2, 1)T.

Iteration 2: f(x1) = −16. So [LBD, UBD] = [−24,−16]. ∇f(x1) = (−5, 2)T,
the optimal solution to miny∈X ∇f(x1)

Ty is obtained at y1 = (2, 0)T, hence the
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search direction will be p1 = (y1 −x1) = (0,−1)T. Since f(x1) +∇f(x1)
T(y1 −

x1) = −18, we have [LBD, UBD] = [−18,−16]. Line search: φ(α) = f(x1 +
αp1) = 22 + 2(1−α)+ 2(1−α)2 − 20− 4(1−α). φ′(α) = −2− 4(1−α) + 4 = 0.
α = 1/2. x3 = (2, 1/2)T.

The point x3 is a KKT point since ∇f(x3) = (−11/2, 0) and the active con-
straint is g(x) = x1 − 2 with ∇g(x3) = (1, 0)T. The objective function is convex
(eigenvalues of the Hessian are all non-negative) and the feasible region is a poly-
hedron, so the problem is convex. A KKT point is sufficient for optimality in
convex problems, and x3 is therefore an optimal point.

Question 6(3p)

(convex problem)

We first conclude that the feasible set is convex. The functions gi, i = 1, 2, 3,
are affine, hence convex. The function g4 is convex, since its Hessian matrix
is constant and diagonal with diagonal entries 0, 4, and 8, which all are non-
negative. In each of these four cases, the constraint is of the form gi(x) ≤ 0; hence,
by Proposition 3.44, each feasible set is convex, and moreover their intersection
is convex by Proposition 3.3.

To establish that the objective function is convex on the convex feasible set of
the problem at hand, we consider the function terms one by one. The function
x 7→ − ln(x1 + x2) is of the form − ln t, where t = x1 + x2. Introducing, for
simplicity, t as an additional variable, we notice that the equation just given is
linear and therefore represent a further convex constraint. Due to constraints 1
and 2, t > 0 on the feasible set, whence ln is well defined there. Finally, − ln t is
a (strictly) convex function on this domain. The second term of the objective is
x3 ln x3. Again, we get from the third constraint that x3 > 0, and hence the term
is well-defined. Taking its derivative with respect to x3 we get 1 + ln x3, and its
derivative is, in turn, 1/x3, which is positive. Hence, the objective function is a
sum of two convex functions and therefore is convex. We are done.



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 5

Question 7(3p)

(linear programming duality)

Suppose, for example, that X is bounded. Then, there exists a bounded optimal
solution for every value of the objective coefficient vector c. Therefore, its dual
must also have bounded optimal solutions for every value of c. It follows that
the dual problem must have feasible solutions for every c. Consider the cone

C := {y ∈ R
m | ATy ≤ 0n, y ≥ 0m }.

By the Representation Theorem, the set Y is bounded if and only if C contains
only the zero vector. By the above, the set {y ∈ R

m | ATy ≤ −e, y ≥ 0m },
where e is the m-vector of ones, is non-empty. Clearly, any of its members are
non-zero, and moreover they belong to the larger set C. Hence, C does not only
contain the zero vector, and so Y is unbounded.

The case where one assumes that Y is bounded is treated similarly.


