
Chalmers/GU
Mathematics

EXAM

TMA947/MAN280
APPLIED OPTIMIZATION

Date: 05–08–25

Time: House V, morning

Aids: Text memory-less calculator

Number of questions: 7; passed on one question requires 2 points of 3.

Questions are not numbered by difficulty.

To pass requires 10 points and three passed questions.

Examiner: Michael Patriksson

Teacher on duty: Niclas Andréasson (0762-721860)
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Question 1

(the Simplex method)

Consider the following linear program:

minimize z = x2,

subject to x1 ≤
3

2
,

2x1 + 3x2 ≥ 6,

x1, x2 ≥ 0.

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity
(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

for producing basis inverses.]

b) Suppose that c1 = 0 (the cost coefficient of x1) changes to c1 = 3. Establish(1p)
whether the optimal basis in the problem solved in a) is optimal in this new
problem, or provide an optimal basis to this new problem if it is not.

Question 2

(the Karush–Kuhn–Tucker conditions)

Consider the nonlinear program to

minimize f(x) := x1,

subject to x2

1 + x2

2 ≤ 2,

(x1 − 2)2 + (x2 − 2)2 ≤ 2.

a) Establish theoretically or graphically that x∗ = (1, 1)T is the unique glob-(1p)
ally optimal solution.

b) Are the KKT conditions satisfied at x∗? Verify!(2p)

If they are not, explain why, and relate your explanation to the known
results on necessary and sufficient optimality conditions.
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Question 3

(The Frank–Wolfe method)

Consider the nonlinear program to

minimize f(x) :=
1

2
x2

1 +
1

2
x2

2 − 2x2 +
1

4
x1x2,

subject to x ∈ X := {x ∈ R
2 | 0 ≤ xj ≤ 1, j = 1, 2 }.

a) Starting at the origin, solve this problem using the Frank–Wolfe method,(2p)
using exact line searches. Apply at most two iterations. For each iteration,
provide the smallest known interval wherein the optimal value (that is, f ∗)
of the problem lies.

b) Suppose the problem is to be solved using the simplicial decomposition(1p)
method. Explain this method briefly, in particular the main difference(s)
to the Frank–Wolfe method.

What is the maximum number of iterations that this method may need to
converge to an optimal solution? Explain your answer in theory, and then
apply it to the given problem. Do not compute the answer by applying the
simplicial decomposition method to the problem.

Question 4

(convexity of functions)

Let f : R
n → R be a continuously differentiable function.

a) Prove that f is convex on R
n if and only if(1p)

f(y) ≥ f(x) + ∇f(x)T(y − x), x, y ∈ R
n.

b) Suppose that f is in C2 on R
n. Prove that f is convex on R

n if and only if(2p)
its Hessian ∇2f(x) is positive semidefinite for every x ∈ R

n.
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Question 5

(linear programming duality and optimality)

Consider the linear program

minimize z =−x1 −2x2,

subject to x1 ≤ 1,

x2 ≤ 2,

x1 +x2 ≤ 3,

x1, x2 ≥ 0.

a) Solve the problem geometrically, and utilize the primal–dual optimality(1p)
conditions in linear programming to provide all optimal solutions to its
dual.

b) Looking at the primal problem geometrically reveals that x∗ can be repre-(2p)
sented by three primal bases. However, it may be that some of these three
bases may not be optimal; such a basis can of course not be a terminal basis
when applying the simplex method to the problem. Provide the three basic
feasible solutions that correspond to x∗, and investigate which one (ones)
is (are) primal optimal (that is, dual feasible).

Question 6

(fixed points)

Consider the quadratic equation

f(x) := x2 + ax + b = 0, (1)

where a, b ∈ R. We are interested in finding a real root of the equation (that is, a
zero of f) if one exists, using a convergent algorithm that is based on elementary
operations only. The present question illustrates how some pocket calculators
work (or, used to work).

Consider first the fixed point iteration

x0 ∈ S; xk+1 :=
x2

k + b

−a
, k = 0, 1, . . . , (2)

where S is a closed and bounded interval containing a solution to (1). Observe
that xk+1 = xk holds if and only if xk is a root, in which case the iterations would
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Calculator “Root” of f

SHARP-EL 506S 0

TI-36X SOLAR 0

TI Programmable 58 10−6

Java, double precision 7.292255 . . . · 10−7

Table 1: “Roots” of f in (1) from some calculators.

be terminated. The convergence of the iteration (2) is of course not guaranteed
for every value of a and b, as is evident from the fact that real solutions to (1)
do not always exist.

a) Let a = −12345678 and b = 9. Using MS Calculator V. 5, an estimate of(1p)
a root of f is 7.290000597780479 . . . · 10−7. Interestingly, using some other
calculators, answers can vary substantially; cf. Table 1.

Starting at x0 = 0, utilize five iterations of the formula (2) and present the
result. Does the algorithm seem to converge to a fixed point, that is, to a
solution to the quadratic equation?

Compare the rate of convergence of the algorithm with that of the following
alternative fixed point algorithm:

x0 ∈ S; xk+1 :=
√

−(axk + b), k = 0, 1, . . . .

(Do not start at x0 = 0, but at some larger value.) Which method is to
prefer?

b) Provide a sufficient condition on a and b such that the convergence of the(2p)
algorithm (2) is guaranteed, supposing that a root exists within S.

[Hint: Provide sufficient conditions such that the iteration defines a con-
traction.]
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Question 7

(linear programming duality and matrix games)

Let c ∈ R
n, b ∈ R

m, and A ∈ R
m×n, and consider the canonical LP problem

minimize z = cTx,

subject to Ax ≥ b,

x ≥ 0n,

and its associated dual LP problem. In the following, we denote the respective
problem by (P) and (D).

a) If m = n and AT = −A, we then say that the matrix A is skew-symmetric.(1p)

Suppose that in the problem (P), the matrix A is skew-symmetric and that
b = −c also holds. Establish that if an optimal solution to (P) exists, then
z∗ = 0 holds.

b) The problem studied in a) is known as a self-dual LP problem.(2p)

Consider again the canonical primal–dual pair (P), (D) of LP problems.
Construct a self-dual LP problem in n + m variables and n + m linear
constraints which is equivalent to (P), (D). By “equivalent” we refer to
the property that any primal–dual optimal solutions x∗ and y∗ to the pair
(P), (D) are obtained immediately as an optimal solution to the problem
constructed. (In other words, we can solve any primal–dual pair of canonical
LP problems as a self-dual LP problem in a higher dimension.)

[Remark: Self-dual LP problems arose perhaps first in applications of linear
two-player matrix games, where the variable vectors x and y are associated
with the two players’ respective strategies, and the matrix A with the
resulting pay-off, that is, the redistribution of wealth between the players.
A self-dual LP corresponds to a linear two-player matrix game called “fair”,
because the fact that the optimal value is zero means that on average,
the two players’ optimal strategies will lead to no redistribution of wealth
between the two players.]

Good luck!
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Question 1

(the Simplex method)

a) After adding two slack variables, a BFS cannot be found directly. We(2p)
create the phase I problem through an added artificial variable a1 in the
second linear constraint; the value of a1 is to be minimized. We use the
BFS based on the variable pair (s1, a1) as the starting BFS for the phase I
problem, terminating the simplex method with the optimal BFS given by
(s1, x2) = (3/2, 2), which is a BFS for the original problem.

Starting phase II with this BFS, the optimal basis for the problem is given
by (x1, x2) = (3/2, 1).

b) In the new problem the reduced cost vector for the non-basic variables is(1p)
given by cT

N
= (−7/3, 1/3), indicating that the BFS is not optimal in the

new problem. After one iteration of the simplex method, the optimal BFS
reached is given by (s1, x2) = (3/2, 2); hence x∗ = (0, 2)T.

Question 2

(the Karush–Kuhn–Tucker conditions)

a) x∗ = (1, 1)T is the only feasible point, hence guaranteed to be globally(1p)
optimal in the problem.

b) Both constraints are active at x∗; their respectively normals (writing them(2p)
as “≤” constraints) are (2, 2)T and (−2,−2)T, respectively. They are not
linearly independent, thus violating the LICQ; the problem also violates the
Slater CQ, since no interior point exists. The vector −∇f(x∗) = (−1, 0)T

cannot be written as a nonnegative linear combination of the normals of
the active constraints, so the KKT conditions are not satisfied.

Question 3

(The Frank–Wolfe method)

a) f is in C1 and strictly convex on X and X is closed, convex and bounded,(2p)
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hence the problem has a unique optimal solution. Moreover, the Frank–
Wolfe method converges to this point from any starting point. (The uncon-
strained minimum is 1

15
(−8, 32).)

Starting at x0 = (0, 0)T, the algorithm proceeds as follows: f(x0) = 0;
∇f(x0) = (0,−2)T; y0 = (0, 1)T (for example); the lower bound z(y0) =
f(x0) + ∇f(x0)

T(y0 − x0) = −2; p0 = y0 − x0 = (0, 1)T; f(x0 + αp0) =
1

2
α2 − 2α, which yields the unique minimum α = 1 over the interval α ∈

[0, 1]; x1 = y0 = (0, 1)T; f(x1) = −3/2; ∇f(x1) = (1/4,−1)T; y1 = x1 =
(0, 1)T; z(x1) = f(x1) = −3/2. The lower and upper bounds are equal,
hence x1 = (0, 1)T = x∗, with the optimal value f ∗ = −3/2.

b) The number of extreme points of X is 4; hence, the maximum number of(1p)
iterations of the simplicial decomposition method needed is also 4.

Question 4

(convexity of functions)

a) See Theorem 3.40(a) in AEP05.(1p)

b) See Theorem 3.41(a) in AEP05.(2p)

Question 5(3p)

(linear programming duality and optimality)

a) x∗ = (1, 2)T; the set of optimal dual solutions is {y ∈ R
3 | y = (−1 +(1p)

t,−2 + t,−t)T, t ∈ [0, 1] }.

b) The three primal BFSs (x1, x2, s1)
T, (x1, x2, s2)

T, and (x1, x2, s3)
T corre-(2p)

spond to the dual basic solutions y = (0,−1,−1)T, y = (1, 0,−2)T, and
y = (−1,−2, 0)T, out of which the second one is infeasible—recall that the
dual variables are restricted to be non-positive! Hence, the primal BFSs
(x1, x2, s1)

T and (x1, x2, s3)
T are optimal, but the BFS (x1, x2, s2)

T is not.
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Question 6(3p)

(fixed points)

a) x5 ≈ 7.2900005977804794852799144749137·10−7; convergence is very rapid.(1p)
Alternative (2) does not converge for any starting value x0.

b) With g(x) = x2+b

−a
we can either establish the contraction property [hence(2p)

utilize Banach’s Theorem 4.34(a) in AEP05] or the convergence criterion
that states that

|g′(x)| ≤ α < 1 holds on S

(which is Exercise 4.9 in AEP05). Utilizing the latter, we obtain the con-
dition that 2|x

a
| ≤ α < 1 holds on S, that is, that the value of a is “large

enough” in comparison with x on S.

Question 7

(linear programming duality and matrix games)

a) Under the given conditions we have that(1p)

z∗ = minimum { cTx | Ax ≥ b, x ≥ 0n }

= maximum { bTy | ATy ≤ c, y ≥ 0m }

= maximum { (−c)Ty | −Ay ≤ −b, y ≥ 0n }

= maximum { (−c)Ty | Ay ≥ b, y ≥ 0n }

= −z∗,

which implies that z∗ = 0.

b) The self-dual skew symmetric LP problem sought is(2p)

minimize cTx − bTy,

subject to

(

0m×n −AT

A 0n×m

)(

x

y

)

≥

(

−c

b

)

,

(x, y) ≥ 0n × 0m.


