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Question 1

(linear programming duality)

a) Consider the following linear program:(2p)

maximize z = x1 + 2x2,
subject to −2x1 + x2 ≤ 2,

−x1 + 2x2 ≤ 7,
x1 ≤ 3,
x1 , x2 ≥ 0.

This problem has the optimal solution x∗ = (3, 5)T. By using duality and
complementarity, determine the optimal dual solution, as well as confirm
that the solution x∗ given is indeed optimal in the primal problem.

b) Consider the standard LP problem to(1p)

minimize cTx,

subject to Ax ≥ b,

x ≥ 0n,

where A ∈ R
m×n, c, x ∈ R

n, and b ∈ R
m.

Suppose that this problem has a feasible solution. Prove that if it has an
unbounded solution, then the corresponding dual problem cannot have any
feasible solution.

Question 2(3p)

(convexity)

Show the following result for convex sets, known as the Separation Theorem:

Suppose that the set C ⊆ R
n is closed and convex, and that the point y does

not lie in C. Then there exist a real α and an n × 1 vector π 6= 0n such that
πTy > α and πTx ≤ α for all x ∈ C.

Illustrate it also geometrically.

When showing this result, you may refer to any other theorems needed without
proof, but you must state the ones you use clearly.



EXAM
TMA947/MAN280 — APPLIED OPTIMIZATION 2

Question 3(3p)

(modelling)

An American oil company manufactures three types of gasoline (gas 1, gas 2, gas
3). Each type of gasoline is produced by mixing together three types of crude
oil (crude 1, crude 2, crude 3). The sales price per barrel of gasoline and the
purchase price per barrel of crude oil is given below.

The company can purchase up to 5,000 barrels of each type of crude oil daily.
The three types of gasoline differ in their octane rating and lead content. The
crude oil blended to form gas 1 must have an octane rating of at least 10 and
contain at most 1% lead. The crude oil blended to form gas 2 must have an
octane rating of at least 8 and contain at most 2% lead. The crude oil blended
to form gas 3 must have an octane rating of at least 6 and contain at most 1%
lead. The octane rating and the lead content of the three types of oil are given
in a table below. It costs USD 4 to transform one barrel of oil into one barrel
of gasoline. The company’s refinery can process up to 14,000 barrels of crude oil
daily.

The company’s customers require the following amounts each gasoline: gas 1—
3,000 barrels per day, gas 2—2,000 barrels per day, gas 3—3,000 barrels per day.
The company considers it an obligation to meet these demands. The company
also has the option of advertising to stimulate demand for its products. Each
dollar spent daily in advertising a particular type of gas increases the daily de-
mand for that type of gas by ten barrels. For example, if the company decides to
spend USD 20 daily in advertising gas 2, the daily demand for gas 2 will increase
by 20 × 10 = 200 barrels.

Formulate the linear program that will enable the company to maximize daily
profits (profits = revenues − costs). To simplify matters, assume the company
cannot store any extra gasoline. This implies that the daily amount of gas pro-
duced should equal the daily demand for each gas type.

Data:

Sales price per barrel (in USD): Gas 1: 70; Gas 2: 60; Gas 3: 50.

Purchase price per barrel (in USD): Crude 1: 45; Crude 2: 35; Crude 3: 25.

Octane rating: Crude 1: 12; Crude 2: 6; Crude 3: 8.

Lead content (in %): Crude 1: 0.5; Crude 2: 2.0; Crude 3: 3.0.
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Question 4

(on the Armijo step length rule in unconstrained optimization)

Consider the unconstrained optimization problem to

minimize f(x),

subject to x ∈ R
n,

(1a)

where f : R
n 7→ R is continuously differentiable and weakly coercive, hence lower

bounded, on R
n. Suppose that to this problem we apply the steepest descent

algorithm with the Armijo step length rule, starting at some x0 ∈ R
n. In the

Armijo rule, we replace the exact line search, in which we

minimize
α≥0

ϕ(α) := f(xk + αpk),

by the following rule:

Let µ ∈ (0, 1). The step lengths accepted by the Armijo step length rule are the
positive values α which satisfy the inequality

ϕ(α) − ϕ(0) ≤ µαϕ′(0), (2a)

that is,

f(xk + αpk) − f(xk) ≤ µα∇f(xk)
Tpk. (2b)

Usually, the value of the step length α is taken to be of the form α := α0 · βi,
where α0 > 0 is the initial step taken, β ∈ (0, 1) is a factor by which we multiply
the initial step if it is not successful (usually, we set β = 1/2 so that the step
length is halved repeatedly), and i is an integer which we first give the value 0,
and then increase by one until α := α0 · β

i is small enough to satisfy (2).

The purpose of this exercise is to point out that the Armijo rule is not always a
good rule, because the initial step length α0 may be hard to choose appropriately.
(Especially, the initial step might be too small to provide fast convergence; since
the Armijo rule is based on decreasing the trial step length and never to increase
it, fast convergence can in such cases not occur.)

Recall the following on the issue of convergence rates: Suppose that {xk} → x∗.
We say that the speed of convergence is linear if the quotients

qk :=
‖xk+1 − x∗‖

‖xk − x∗‖
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satisfy that
lim sup

k→∞

qk < 1.

Suppose now that

f(x) := x4/4, x ∈ R. (3)

a) Describe the iteration of the steepest descent method for the problem (1)(2p)
when f is given by (3), that is, give the formula that provides xk+1 from xk

when the step length chosen is αk.

Further, show that no matter how small or large (but finite and positive)
the value of α0 is chosen, linear convergence cannot be obtained for the
steepest descent method using the Armijo step length rule, when applied
to the given problem. Explain why!

b) Suppose we instead apply Newton’s method with line searches. Show that(1p)
linear convergence is guaranteed for any choice of α0 > 0 small enough, or
for αk = 1 for all k and any value of µ > 0 small enough.

Question 5

(nonlinear programming optimality)

Consider the optimization problem to

minimize
x

f(x), (1a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (1b)
hj(x) = 0, j = 1, . . . , `, (1c)

where the functions f , gi (i = 1, . . . , m), and hj (j = 1, . . . , `) are continuously
differentiable on R

n.

a) Suppose that x̄ is feasible in the problem (1). Prove the following statement(1p)
by using linear programming duality: x̄ satisfies the Karush–Kuhn–Tucker
(KKT) conditions if and only if the following LP problem has the optimal
value zero:

minimize
p

∇f(x̄)Tp,
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subject to gi(x̄) + ∇gi(x̄)Tp ≤ 0, i = 1, . . . , m,
hj(x̄) + ∇hj(x̄)Tp = 0, j = 1, . . . , `.

Describe briefly how this LP problem could be used to devise an iterative
method for the problem (1).

b) Prove that if the problem (1) is convex then each one of its KKT points is(2p)
globally optimal.

Question 6(3p)

(linear programming geometry)

Consider the non-empty polyhedron X = {x ∈ R
n | Ax ≤ b; x ≥ 0n }, where

A ∈ R
m×n and b ∈ R

m. We say that a linear inequality of the form dTx ≤ d0 is
redundant relative to the set X if X ∩ {x ∈ R

n | dTx ≤ d0 } = X.

Show the following:

dTx ≤ d0 is redundant relative to the set X

⇐⇒

∃µ ≥ 0m with ATµ ≥ d and bTµ ≤ d0.

Hint: Use LP duality in one of the directions.

[This result implies a natural procedure for detecting unnecessary constraints in
LP problems.]

Question 7

(Lagrangian duality)

Consider the following optimization (linear) problem:

minimize f(x, y) = x − 0.5y,

subject to −x + y ≤ −1,

−2x + y ≤ −2,

(x, y) ∈ R
2

+.

(1)
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a) Show that the problem satisfies Slater’s constraint qualification. Derive the(2p)
Lagrangian dual problem corresponding to the Lagrangian relaxation of the
two linear inequality constraints, and show that its set of optimal solutions
is convex and bounded.

b) Calculate the set of subgradients of the Lagrangian dual function at the(1p)
dual points (1/4, 1/3)T and (1, 0)T.

Good luck!
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Question 1

(linear programming duality)

a) The LP dual is to

minimize w = 2y1 + 7y2 + 3y3,
subject to −2y1 − y2 + y3 ≥ 1,

y1 + 2y2 ≥ 2,
y1 , y2 , y3 ≥ 0.

The complementarity conditions are next investigated. First, we check the
conditions of the type

y∗
i ·





n
∑

j=1

aijx
∗
j − bi



 = 0, i = 1, . . . , m.

Checking the primal constraints reveals that the first constraint is fulfilled
strictly while the remaining two have no slack. This is implies that y∗

1 =
0 must hold. Next, we investigate the second type of complementarity
conditions:

x∗
j ·

(

m
∑

i=1

aijy
∗
i − cj

)

= 0, j = 1, . . . , n.

Since x = (3, 5)T is strictly positive, both dual constraints are active. To-
gether with the fact that y∗

1 = 0 leaves the following system of linear equa-
tions:

−y∗
2 + y∗

3 = 1;
2y∗

2 = 2;

its unique solution is that y∗
2 = 1; y∗

3 = 2.

It remains to check that all dual constraints are satisfied, that is, to also
check the sign conditions. Non-negativity is clearly satisfied, so y∗ =
(0, 1, 2)T is the unique dual optimal solution. We therefore know from
the complementarity theorem that x∗ and y∗ are optimal in their respec-
tive problem. But we check nevertheless that strong duality is fulfilled:
cTx∗ = 13 = bTy∗.

b) The proof is by contradiction. Suppose that (D) has a feasible solution.
Since (P) has a feasible solution we can apply the Strong Duality Theorem
and conclude that both (P) and (D) have finite optimal solutions which
moreover have the same objective value. But this contradicts the fact that
(P) has an unbounded solution. Therefore, the claim that (D) has a feasible
solution is false. We are done.
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Question 2

(convexity)

A proof is found in the course notes (Theorem 3.26).

Question 3

(modeling)

Variable declaration:

• ci = number of barrels of crude oil of type i bought (i = 1, 2, 3);

• bij = number of barrels of crude oil of type i used to produce gas of type j
(i = 1, 2, 3, j = 1, 2, 3);

• aj = number of dollars spent on advertising for gas type i (i = 1, 2, 3);

• gi = number of barrels of gas of type j produced (j = 1, 2, 3).

Objective function: maximize the difference between the income of selling oil and
the cost of producing it (the latter including buying crude oil, transforming crude
oil to gas, and advertizing), that is:

maximize (70− 4)g1 +(60− 4)g2 +(50− 4)g3− (45c1 +35c2 +25c3 +a1 +a2 +a3).

Constraints:

• For each type of oil:

– definition of product;

– minimum octane rating; and

– maxiumum lead content;

• All crude oil bought is used;

• Maximum purchase of crude oil;

• Maximum capacity of production;
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• Demand of products;

• Physical constraints.

In the same order:

b11 + b21 + b31 = g1,

12b11 + 6b21 + 8b31 ≥ 10g1,

0.5b11 + 2b21 + 3b31 ≤ g1,

b12 + b22 + b32 = g2,

12b12 + 6b22 + 8b32 ≥ g2,

0.5b12 + 2b22 + 3b32 ≤ 2g2,

b13 + b23 + b33 = g3,

12b13 + 6b23 + 8b33 ≥ 6g3,

0.5b13 + 2b23 + 3b33 ≤ g3,

b11 + b12 + b13 = c1,

b21 + b22 + b23 = c2,

b31 + b32 + b33 = c3,

cj ≤ 5, 000, j = 1, 2, 3,

c1 + c2 + c3 ≤ 14, 000,

g1 ≥ 3, 000 + 10a1,

g2 ≥ 2, 000 + 10a1,

g3 ≥ 3, 000 + 10a1,

ci, bij, aj, gj ≥ 0, i = 1, 2, 3; j = 1, 2, 3.

Question 4

(on the Armijo step length rule in unconstrained optimization)

a) We have that xk+1 = xk(1 − αkx
2
k).

The requirements of linear convergence imply that 1−αkx
2
k must be bounded

away from 1, that is, that αkx
2
k must be bounded away from zero. But since

x∗ = 0 this requires that αk tends to infinity faster than x2
k tends to zero;

there is obviously no finite value of α0 that can produce such step lengths.
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b) We have that xk+1 = xk(1 − αk/3).

According to the Newton formula above, if we can ensure that αk = 1
is always going to be accepted by the Armijo rule, then we have linear
convergence with rate q := 2/3. In this case, we than have that xk+1 =
(2/3)xk. With αk = 1 the Armijo rule requires that 1 − (2/3)4 ≥ (4/3)µ
which clearly is satsified as long as the value of µ is small enough. (µ ≤ 0.6
will do.)

Question 5

(nonlinear programming optimality)

a) Let us first rewrite the LP problem into the following equivalent form, and
note that hj(x̄) = 0 for all j, since x̄ is feasible:

minimize
p

∇f(x̄)Tp,

subject to −∇gi(x̄)Tp ≥ gi(x̄), i = 1, . . . , m,
−∇hj(x̄)Tp = 0, j = 1, . . . , `.

Letting µ ≥ 0m and λ ∈ R
` be the dual variable vector for the inequality

and equality constraints, respectively, we obtain the following dual pro-
gram:

maximize
( �

, � )

m
∑

i=1

µigi(x̄),

subject to −
m
∑

i=1

µi∇gi(x̄) −
∑̀

j=1

λj∇hj(x̄) = ∇f(x̄),

µi ≥ 0, i = 1, . . . , m.

LP duality now establishes the result sought: First, suppose that the op-
timal value of the above primal problem over p is zero. Then, the same
is true for the dual problem. Hence, by the sign conditions µi ≥ 0 and
gi(x) ≤ 0, each term in the sum must be zero. Hence, we established that
complementarity holds. Next, the two constraints in the dual problem are
precisely the dual feasibility conditions, which hence are fulfilled. Finally,
primal feasibility of x̄ was assumed. It follows that this vector indeed is a
KKT point.

Conversely, if x̄ is a KKT point, then the dual problem above has a feasible
solution given by any KKT multiplier vector (µ, λ). The dual objective is
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upper bounded by zero, since each term in the sum is non-positive. On the
other hand, there is a feasible solution with the objective value 0, namely
any KKT point! So, each KKT point must constitute an optimal solution
to this dual LP problem! It then follows by duality theory that the dual of
this problem, which is precisely the primal problem in p above, has a finite
optimal solution, whose optimal value must then be zero. We are done.

The LP problem given in the exam is essentially the subproblem in the
Sequential Linear Programming (SLP) algorithm. By the above analysis,
the optimal value must be negative if x̄ is not a KKT point, and it must
therefore also be negative (since a zero value is given by setting p = 0n).
The optimal value of p, if one exists, is therefore a descent direction with
respect to f at x̄. A convergent SLP method introduces additional box
constraints on p in the LP subproblem to make sure that the solution is
finite, and the update is made according to a line search with respect to
some penalty function.

b) The problem is convex if f and the functions gi (i = 1, . . . , m) are convex,
and the functions hj (j = 1, . . . , `) are affine. A proof that every KKT
point is globally optimal is found in the course notes (Theorem 6.45).

Question 6

(linear programming geometry)

We prove first the result in the direction “⇐=”. So we assume that such a vector
µ exists. Let x ∈ X. Then,

dTx ≤ µTAx ≤ µTb ≤ d0

holds, which establishes that the inequality is redundant: it is always fulfilled on
X.

We next prove the result in the direction “=⇒”. So we assume that the inequality
is redundant. An implication of that is that the following LP problem must have
an optimal value which is less than or equal to d0, because otherwise we would
reach a contradiction:

maximize dTx,

subject to Ax ≤ b,

x ≥ 0n.
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Since the primal problem has a finite optimal solution, so does the dual problem
to

minimize bTµ,

subject to ATµ ≥ d,

µ ≥ 0m.

This solution is in particular feasible, and its optimal value must also be less than
or equal to d0. We are done.

Question 7

(Lagrangian duality)

a) The Slater’s CQ is clearly verified since the problem is convex (even linear),(2p)
and there is a strictly feasible point [e.g., (x, y)T = (3, 1)T].

Introducing Lagrange multipliers µ1 and µ2 we calculate the Lagrangian
dual function q:

q(µ1, µ2) = min
(µ1,µ2)∈ � 2

+

{x − 0.5y + µ1(−x + y + 1) + µ2(−2x + y + 2)}

= µ1 + 2µ2 + min
x≥0

(1 − µ1 − 2µ2)x + min
y≥0

(−0.5 + µ1 + µ2)y

=







µ1 + 2µ2, if µ1 + 2µ2 ≤ 1 and µ1 + µ2 ≥ 0.5,

−∞, otherwise.

Thus the set of optimal Lagrange multipliers is { (µ1, µ2) | µ1 ≥ 0, µ2 ≥
0, µ1 + 2µ2 = 1 }, which is clearly convex and bounded (e.g., you may
illustrate this graphically) as it should be in the presence of Slater’s CQ.

b) Subgradients of the Lagrangian dual function are calculated as follows:(1p)

1. At (µ1, µ2)
T = (1, 0)T the set of optimal solutions to the Lagrangian

relaxed problem is the singleton { (0, 0)T }. Hence, the Lagrangian
function is differentiable at this point and its gradient equals the value
of the vector of constraint functions evaluated at the optimal solution
to the relaxed problem, i.e., (−0 + 0 + 1,−2 · 0 + 0 + 2)T = (1, 2)T.
Alternatively, we may directly differentiate q at a given point to obtain
the same result.

2. At (µ1, µ2)
T = (1/4, 1/3)T the set of optimal solutions to the La-

grangian relaxed problem is not a singleton: it equals { (x, 0)T | x ≥
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0 }. Hence, the dual function is not differentiable, and the set of
subgradients is obtained by evaluating the constraint functions at
the optimal solutions to the relaxed problem, i.e., ∂q(1/4, 1/3) =
{ (−x + 1,−2x + 2)T | x ≥ 0 }.


