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Question 1

(the Simplex method)

Consider the linear program

minimize z = x1 +2x2 +3x3

subject to 2x1 −5x2 +x3 ≥ 2,

2x1 −x2 +2x3 ≤ 4,

x1, x2, x3 ≥ 0.

a) Solve the problem by using Phase I & II of the Simplex method.(2p)

b) Is the solution obtained unique? (Motivate!)(1p)

In order to calculate necessary matrix inverses the following basic identity might
be useful:

(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

.

Question 2(3p)

(modelling)

Figure 1 describes two production processes by which we can make the product
D from the raw materials A, B, and C.
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Figure 1: The production processes.
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The figure illustrates that process 1 requires 1 unit of raw material A, 2 units
of raw material B, and 3 units of raw material C in order to produce 1 unit of
product D, and process 2 requires 3 units of A, 2 units of B, and 1 unit of C
in order to produce one unit of D. The capacities of the processes 1 and 2 are
p1 and p2, respectively, of units of the product D. Further the processes 1 and 2
are associated with the fixed start-up costs f1 and f2. For example, if process 1
is used for production, then f1 must be paid independently of how many units
of D that are actually produced. The cost per unit of the raw materials A, B,
and C are cA, cB, and cC , respectively. There are three demand centers that
require d1, d2, and d3 units, respectively, of product D. We may assume that the
transportation cost is negligible compared to all other costs.

Formulate a linear integer programming model (that is, if the integer requirements
are relaxed we shall end up with an ordinary linear program) for finding the
production quantities that minimize the total cost given that demand is fulfilled.

Question 3

(Newton’s algorithm)

An engineer has decided to verify numerically that the exponential function x 7→
exp(x) = ex grows faster than any polynomial. In order to do so he/she studies
the optimization problem to

minimize f(x) = xα − exp(x), (1)

where α is the highest power of the polynomial (we assume it is an even, positive
integer number). The engineer uses a Newton method (with unit steps!) to
solve the problem. He/she argues that if the exponential function grows faster
than any polynomial, then the sequence {xk} generated by the method should
converge to infinity, because the objective function f can be decreased indefinitely
by increasing the value of x.

a) State the Newton iteration explicitly for the given problem (1).(1p)

b) Find the error in the engineer’s reasoning and formally explain it.(1p)

c) Construct a numerical example (that is, choose a value of α ∈ {2, 4, . . . },(1p)
and a starting point of the Newton algorithm) illustrating the engineer’s
error in reasoning.
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Question 4

(claims about optimality)

Each of the three questions below are to be answered independently. For each of
them we now describe the task to be performed: After the problem description,
a claim is made. Given the properties stated before the claim, the claim is not
true. However, under additional properties of the problem the claim is true. Your
task is to describe a reasonable and mild additional set of properties that makes
the claim valid. (All claims are based on basic results in the course notes.) In
addition to providing these additional properties, you must also state why this
property is needed, by providing a counter-example to the claim for the case when
the property is not present.

a) Consider the standard LP problem to(1p)

minimize cTx,

subject to Ax ≥ b,

x ≥ 0n,

where A ∈ R
m×n, c, x ∈ R

n, and b ∈ R
m. Suppose further that there exist

feasible solutions to this problem.

Claim: There exists at least one optimal solution to this problem.

b) Consider the problem to(1p)

minimize f(x),

subject to x ∈ R
n,

where f : R
n 7→ R is continuously differentiable and lower bounded on R

n.
Suppose that to this problem we apply the steepest descent algorithm with
the Armijo step length rule, starting at some x0 ∈ R

n and generating a
sequence {xk} of iterates.

Claim: The following is true:

• {f(xk)} ↓ f̄ ∈ R;

• {∇f(xk)} → 0n;

• {xk} has at least one accumulation point, x̄ ∈ R
n; for each accumula-

tion point x̄, f(x̄) = f̄ and ∇f(x̄) = 0n holds.
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c) Consider the problem to(1p)

minimize f(x),

subject to g(x) ≤ b,

where f : R
n 7→ R and g : R

n 7→ R are continuous functions, and b ∈ R.
Suppose that this problem has a globally optimal solution, x∗, and that
g(x∗) < b holds.

Claim: The vector x∗ is also a globally optimal solution to the uncon-
strained problem to

minimize f(x),

subject to x ∈ R
n.

Question 5

(duality)

Consider the optimization problem to

minimize f(x, y) = y,

s.t. (x − 1)2 + y2 ≤ 1,

(x + 1)2 + y2 ≤ 1,

(1)

where x, y ∈ R.

a) Find every point of global and local minimum (you may do this graphi-(1p)
cally). Is this a convex problem? Does it verify Slater’s CQ or the linear
independence CQ (LICQ)?

b) Derive the expression of the Lagrangian dual function q : R
2
+ 7→ R ∪(1p)

{−∞, +∞} associated with the Lagrangian relaxation of both constraints
of the problem (1).

c) Show that strong duality holds, that is, that f ∗ = supλ∈
�

2

+
q(λ) holds, where(1p)

f ∗ is the optimal value of the primal problem (1).
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Question 6

(convexity)

Throughout the course we have stressed that convexity is a crucial property of
functions when analyzing optimization models in general and studying optimality
conditions in particular. There are, however, certain properties of convex func-
tions that are shared also by classes of non-convex functions. The purpose of
this question is to relate the convex functions to two such classes of non-convex
functions by means of some example properties.

Suppose that S ⊆ R
n and that f : R

n 7→ R is continuous on S.

a) Suppose further that f is continuously differentiable on S (C1 on S). We(1p)
say that the function f is pseudo-convex on S if, for every x, y ∈ S,

∇f(x)T(y − x) ≥ 0 =⇒ f(y) ≥ f(x).

Establish the following two statements: (1) every differentiable, convex
function on R

n is pseudo-convex on R
n (that is, “convexity implies pseudo-

convexity”); (2) the reverse statement (“pseudo-convexity implies convex-
ity”) is not true. Hint: On the statement (2) you may construct an explicit
or graphical counter-example.

b) A well-known property of a differentiable convex function is its role in nec-(1p)
essary and sufficient conditions for globally optimal solutions. Suppose now
that S is convex. If f is a convex function on R

n which is in C1 on S then
the following statement holds (Theorem 4.21 in the course notes):

x∗ is a global minimum of f over S ⇐⇒ ∇f(x∗)T(y − x∗) ≥ 0, ∀y ∈ S.

Establish that this equivalence relation still holds if the convexity of f is
replaced by the pseudo-convexity of f .

c) Let S be convex. We say that the function f is quasi-convex on S if its(1p)
level sets are convex. In other words, f is quasi-convex on S if

levS
f (b) := {x ∈ S | f(x) ≤ b }

is convex for every b ∈ R.

Establish the following two statements: (1) every convex function on S is
quasi-convex on S (that is, “convexity implies quasi-convexity”); (2) the
reverse statement (“quasi-convexity implies convexity”) is not true. Hint:
On the statement (2) you may construct an explicit or graphical counter-
example.
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Question 7(3p)

(Lagrangian duality)

Consider the optimization problem to find

f ∗ := infimum
x

f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,

x ∈ X,

(1)

where f : R
n 7→ R and gi : R

n 7→ R (i = 1, 2, . . . , m) are given functions, X ⊆ R
n;

we assume that −∞ < f ∗ < ∞. For an arbitrary vector µ ∈ R
m, we define the

Lagrange function

L(x, µ) := f(x) +
m

∑

i=1

µigi(x) = f(x) + µTg(x).

We call the vector µ∗ ∈ R
m a Lagrange multiplier if it is non-negative and if

f ∗ = inf
x∈X L(x, µ∗) holds.

For the problem (1), establish the following theorem on global optimality condi-
tions in the absence of a duality gap:

The vector (x∗, µ∗) is a pair of optimal primal solution and Lagrange multiplier
if and only if

µ∗ ≥ 0m, (Dual feasibility) (2a)

x∗ ∈ arg min
x∈X

L(x, µ∗), (Lagrangian optimality) (2b)

x∗ ∈ X, g(x∗) ≤ 0m, (Primal feasibility) (2c)

µ∗

i gi(x
∗) = 0, i = 1, . . . , m. (Complementary slackness) (2d)

Good luck!
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Question 1

(the Simplex method)

a) By introducing a surplus-variable s1 and a slack-variable s2 the standard
form of the problem is to

minimize z = x1 +2x2 +3x3

subject to 2x1 −5x2 +x3 −s1 = 2,

2x1 −x2 +2x3 +s2 = 4,

x1, x2, x3, s1, s2 ≥ 0.

By introducing an artificial variable in the first constraint and solving the
Phase I problem we get the BFS xB = (x1, s2). This BFS also gives the
optimal solution x = (x1, x2, x3)

T = (1, 0, 0)T to the original problem.

b) This is the unique optimal solution since the reduced costs of the non-basic
variables xN = (x2, x3, s1)

T are all strictly positive [c̃N = (4.5, 2.5, 0.5)T].

Question 2

(modelling)

Introduce the following variables:

xij = the number of D from process i = 1, 2 sent to demand center j = 1, 2, 3,

zi =







1, if process i = 1, 2 is used,

0, otherwise.

The linear integer programming problem is then to

minimize (cA + 2cB + 3cC)
3

∑

j=1

x1j + (3cA + 2cB + cC)
3

∑

j=1

x2j +
2

∑

i=1

fizi

subject to
2

∑

i=1

xij ≥ dj, j = 1, 2, 3,

3
∑

j=1

xij ≤ pizi, i = 1, 2,

zi ∈ B, xij ∈ Z+, i = 1, 2, j = 1, 2, 3.
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Question 3

(Newton’s algorithm)

a) Newton’s equation:

xk+1 = xk −
αxα−1 − exp(x)

α(α − 1)xα−2 − exp(x)

b) The objective function of the problem is not convex in general [may be
verified by analysing the sign of the Hessian α(α− 1)xα−2 − exp(x)]. Since
the convergence of the Newton method is local in nature, the method is
most likely to converge to the nearest local minimum. The engineer thus
wrongly assumes the global convergence of the Newton method.

c) Probably the simplest counter-example is obtained by taking x0 = 1, α = 2.
These initial values cause the Newton’s method to generate an oscillating
sequence x2k−1 = 0, x2k = 1, k = 1, 2, . . . .

Question 4

(claims about optimality)

a) Additional property: the polyhedron is bounded.

Counter-example: the problem to maximize x1 subject to x1 ≥ 0 has no
optimal solution.

b) Additional property: f is weakly coercive.

Counter-example:

minimize f(x) =







−x, x ≤ 1,

1/x, x ≥ 1

is in C1 on R and lower bounded. If we apply the steepest descent method
on it, however, we obtain {xk} → ∞ while {f ′(xk)} → 0.
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c) Additional property: f and g are convex functions.

Counter-example: f(x) = x5 − 100x3; g(x) = −x; and b = −6 (that is, the
constraint is x ≥ 6).

The below plot shows the appearance of the function f in the interval
[−12, 12]; clearly, the optimal solution to the constrained problem is x∗ ≈
7.5, and g(x∗) < b holds, but if we remove the constraint we see from the
figure that there is no optimal solution to the problem—we may let f(x)
tend to minus infinity by letting x tend to minus infinity.
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Figure 1: The function f(x) = x5 − 100x3 on an interval.

Question 5

(duality)

a) The only point that is feasible in the problem is the point (x, y) = (0, 0)
(easily verified graphically); thus it is the only locally and globally optimal
solution. The problem is convex (both the objective function and the less-
than-or-equal-to constraints are convex). It however does not satisfy the
Slaters’s CQ (there are no strictly feasible points), or LICQ (the gradients
of the active constraints at the only feasible point are linearly dependent).
An alternative argument is that the locally optimal solution (0, 0)T is not
a KKT point, which means that CQs cannot hold.

b) Introducing the Lagrange multipliers µ and λ for the constraints of the
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problem, we get

q(λ, µ) = inf
(x,y)∈

�
2

{

y + λ[(x − 1)2 + y2 − 1] + µ[(x + 1)2 + y2 − 1]

}

.
(1)

If λ = µ = 0 we get q(λ, µ) = −∞; it remains thus to calculate q for
assuming λ+µ > 0. From the necessary (and sufficient in this convex case)
optimality conditions we get:

{

2λ[x − 1] + 2µ[x − 1] = 0

1 + 2λy + 2µy = 0
≡



















x =
λ − µ

λ + µ

y = −
1

2(λ + µ)
.

Substituting this into (1) we finally obtain

q(λ, µ) = −
1

4(λ + µ)
−

(λ − µ)2

λ + µ
.

c) Show that the strong duality holds, that is, z∗ = supλ∈
�

2

+
q(λ), where z∗ is

the optimal value of the primal problem.

Clearly, in our case z∗ = 0. Thus, by the weak duality, or from the ex-
plicit formula for the dual function, we have that for all (λ, µ) ∈ R

2
+ it

holds that q(λ, µ) < 0. Still, limλ→+∞ q(λ, λ) = 0, which means that
sup(λ,µ)∈

�
2
+

q(λ, µ) = 0 = z∗.

Question 6

(convexity)

a) (1) We utilize the following characterization of convexity of f on R
n:

f(y) ≥ f(x) + ∇f(x)T(y − x), x, y ∈ R
n.

It follows that if x and y are such that ∇f(x)T(y−x) ≥ 0 then f(y) ≥ f(x)
also holds; hence, f is pseudo-convex on R

n.

(2) The function in the below figure is of a form often referred to as “uni-
modal,” that is, it has a unique minimum and it increases both to the right
and left of this minimum. If such a function is differentiable then it is also
pseudo-convex (check this!).

It is however not convex.
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Figure 2: A unimodal function.

b) The result in the direction of =⇒ (the necessary condition) is true for every
differentiable function. The result in the direction of ⇐= (the sufficient
condition) follows immediately from the definition of pseudo-convexity.

c) (1) This result is Proposition 3.48 in the Course Notes.

(2) A unimodal function has convex level sets, and so the example in the
above figure works as a conuter-example here as well.

Question 7

(Lagrangian duality)

The proof of the consistency of the global optimality conditions be found in
Theorem 7.6 in the Course Notes.


