Mathematics Chalmers & GU
TMA372/MMGRS800: Partial Differential Equations, 2020—-08-27, 8:30-12:30

Telephone: Mohammad Asadzadeh: ankn 3517

An open book exam.

Each problem gives max 6p. Valid bonus points will be added to the scores.

Breakings for Chalmers; 3: 15-21p, 4: 22-28p, 5: 29p-, and for GUj; G: 15-26p, VG: 27p-

1. Let u(x) be a function such that u(1) = 3 and u(2) = —1 and
2
/ xu'(z)v (x)de =0, VYv: v(l)=0(2)=0.
1

a) Which differential equation and including boundary data solves u?
b) Formulate a suitable finite element method for the problem
¢) Give a suitable a priori error estimate for this problem.

2. Determine if the assumptions of the Lax-Milgram theorem are satified for

a(v,w) :/Iv’w'dx+v(0)w(0), I=1(0,1), L(v) z/lfvd:c, felLy(I), V=HY).

3. Determine the stifness matrix and load vector in ¢G(1) finite element method applied to Poisson
equation

—Au=2 imnQ={(z,y):0<z<2, 0<y<1},
with a combination of, homogeneous, Neumann boundary conditions at 'y := {(2,y) : 0 <y < 1}
and Dirichlet boundary condition at I'; := 90\ I'2, on a mesh with stepsize 2/3 in the z-direction
and 1/3 in y-direction.

4. Derive an a posteriori error estimate for the ¢G(1) solution of the problem
"+ 2 +u=f, in I=(0.1), u(0) = u(1) =0,
in the energy norm |[v||3, = (v,v) = [,(v"* +v?)dz, (f € Lao(1)).

5. Let €2 be a convex polygonal domain and uy, the continuous piecewise linear, finite element
solution of the Poisson equation

—Au=f in Q
u =0 on I
Show that there is a constant C' independent of u and h such that
lu = unl|L,0) < Ch?|ul g2 (o)
Hint: Assume that, for the inhomogeneous equation —Au = f, with f € H*(Q),
lu = unllms+2i0) < Cllfla=(0)-
Use also the interpolation estimate:

lu = mhul| Ly 0) < CR*ulg2(q).

6. Let § denote Dirac delta function and ¢ = v/—1. Find a solution for the 3D-problem
iz, t) — Au(z,t) = 5(x), x€R3.

Hint: Set u = e’'v, with v(z) = w(z)/r wgere r = |z|. One can show that rv = w — £ as r — 0.
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TMA372/MMGS800: Partial Differential Equations, 2020—-08—27, 8:30-12:30.
Solutions.

1. Solution: Partial integration with boundary data v(1) = v(2) = 0 gives

2 2
(1) 0= / xu'v' dv = —/ (2xu) x dz,
1 1
which, since v = v(x) is arbitrary, yields

(x(u’(x))/:O, w(l) =3, u(2) =—1.

Now consider the partition T, : 1 =2¢ < 21 < ... < 241 = 2, subintervals I = (xg_1, k), and
the subspace
Vh, :={v = v(x) : v is continuous, and v|;, is linear Vk},

and
V0= {veV,:v(l)=0v(2) =0}
FEM: Vi seek up, € Vj, such that up(1) = 3, up(2) = —1 and

2
(2) / zupv’ dv =0, Yo e V2.
1
From the subtraction (1)-(2) one gets
2
/ z(u —up)v'dr =0, Yo e V2.
1
Then with the Lg-norm: || - ||, on (1,2) we have

2
IV — )| = / o — ) (o — ) de
/1x(u’—u'h)(u’—u’h—v)dx
< Wz — ) IIVEQ 1y — )]l

Now a suitable choice of v, interploating u — uy, yields

IV —up)ll < (Ve —uj, — o)l < Cif[Vahu"||.

2. Solution: For the formulation of the Lax-Milgram theorem see the book, Chapter 2.
As for the given case: [ = (0,1), f € La(I), V = H*(I) and

a(v,w):/I(v’w')d:chv(O)w(O), L(v):/}fvdz,

it is trivial to show that a(-,-) is bilinear and b(-) is linear. We have that

/ 1 , 1 1 ,
3) a(v,v) = /I(v 2 dz + v(0)2 > 5/I(v ) dz + 50(0)” + 5/}@ 2 da.
Further "
v(x) = v(0) —|—A V'(y)dy, Vxel
implies )
v (z v(0)? v 2 - v(0)? V' (y)?
(@) <2002+ ([ ) dn?) <40 -8} <2007 +2 [ )2 an



so that

1 1! 1
—v(0)% + f/ V' (y)?dy > v (z), Vrxel.
2 2 /s 4
Integrating over x we get
Lo L[t 1 2
(4) —0(0)*+ = [ V(y)*dy >~ [ v:(x)dz.
Now combining (3) and (4) we get
1 1
a(v,v) > ~ /’1}2(.%‘) dr + = /(v’)Q(x) dx
4Jr 21
1 1
> = 2 "2 — 2
> 1([P@art [0y ) = 31l

so that we can take k1 = 1/4. Further
ao.0)] < | [ o0’ da]-+1000)0(0)] (€ = 8} < [lagn 10/l Ln) + [0l (0)
< [ollvllwlly + [v(0)[lw(0)]
Now we have that

(5) v(0) = — / () dy+o(x), Vrel,

and by the Mean-value theorem for the integrals: 3¢ € I so that v(§) = fol v(y) dy. Choose = = &
in (5) then

v =]~ [t [ )

1 1
< [ Wldy+ [ poldy <{C = 8 < 9 llzacn + el < 2ol
0 0
implies that
[0(O)[[w(0)] < 4fv[lv[|wl]v,
and consequently
|a(u, w)| < |vllv[[wllv + 4]v[|v[[w]lv = 5v[lv[[w]|v,

so that we can take ko = 5. Finally

LI =] [ oda] < llzacpllelleaco < 1flnlvly.

taking sz = || f||L, (1) all the conditions in the Lax-Milgram theorem are fulfilled.

3. Solution: We use the notation (z,y) = (21, x2) and hence I'y := 002\ T's where I'y := {(2, z2) :
0 < x5 < 1}. Define
V={v:ive H(Q), v=0 on T\}.

Multiply the equation by v € V' and integrate over 2; using Green’s formula

/VU~VU—/%1}:/VU-VU:2/U,
Q r on Q Q

where we have used I' = I'y UT'5 and the fact that v =0 on I'y and g—;‘b =0onI's.

Variational formulation: Find v € V such that

/Vu~Vv:2/v, Yv e V.
Q Q

FEM: cG(1):



Find U € V}, such that
(6) /VU-VU:2/U, YoeVy, CV,
Q Q

where
Vi, = {v : v is piecewise linear and continuous in Q, v =0 on I';, on the given mesh }.
A set of bases functions for the finite dimensional space V}, can be written as {¢;}S_;, where

w; € WV, 1=1,2,3,4,5,6
@Z(Nj):(slj? iaj:1a273a47576

Then the equation (6) is equivalent to: Find U € V}, such that
(7) /VU~V<pi=2/<pi, 1=1,2,3,4,5,6.
Q Q

Set U = Z?:l &;p;. Invoking in the relation (3) above we get

6
ij/ Vo, V= 2/ vi,  i=1,2,3,4,5,6.
= e Q
Now let a;; = [, Vi, - Vi and b; = [, @i, then we have that

A& =0, Ais the stiffness matrix b is the load vector.
To compute compute a;; and b; we note that area of the standard element T', with base = 2/3
and hight = 1/3, is
T =1/2-2/3-1/3=1/9
and the bases functions, and their gradients, for the standard element, with base = 2/3 and hight
=1/3, are

1
Vortes) =-3| % |
1(zy) =1-3(5+v) 1
d2(z,y) = %x = ¢ Vo(z,y) =3 (2)
¢3($,y) =3y 0
V%(x,y) =3 1 .

Thus 1
o o 6.7.|T|~1:2/9’ 7::1,2,3,4
bz—/ﬂ<p1_{3.z.|T|.1—1/9, i=5,6.

and the standard stiffness matrix elements are

siu = (Vo1, Vo1) = [ V1 - Vi = % 9t +1)=2
si2 = (Vo1, Vo) = [ V1 -V = g (-9):=-1

s13 = (Vo1, Vos) = [ V1 - Vs = R (=9)-1=-1
so2 = Vo, Vo) = [ Vo Vo =5-9-1 =1

se3 = (Voo, Vo) = [ Vs - V3 =0

ss3 = (Vos, Vo) = [ Vs Vs =5-9-1=1.

and hence the local element-stiffness matrix, taking the symmetry into account, is:

5/4 —1/4 -1
S=|( -1/4 1/4 0
-1 0 1

To compute elements a;; for the global stiffeness matrix A we have that
2-(24+141)=5 i=1,2,3,5
Qig = Vi -V, = 41 ’ ; T
/Q pive {i+i+1:5/2, i =56
3



Further

a12 = agzq = 2813 = —2
a13 = Ay = ag5 = Q46 = 2512 = — 3
a1g = azs = 2512 = — 3
a15 = Q16 = G23 = 25 = G26 = Q45 = 0
ase = s13 = —1
Thus we have
5 -2 —1/2 —1/2 0 0 2
9 5 0 -1/2 0 0 2
A | -2 0 5 -2 —1/2 —1/2 ,_ 1] 2
| 12 —12 -2 5 0 —1/2 9| 2
0 0 —1/2 0 5/2 -1 1
0 0 —-1/2 -1/2 -1 5/2 1

4. Solution: The Variational formulation: Let V° := H}(0,1), Multiply the equation by v € V°,
integrate by parts over (0,1) and use the boundary conditions to obtain

1 1 1 1
(8) Find u € VO : / u'v' dx + 2/ w'vdx +/ wdx = / fvdz, YveVO.
0 0 0 0

cG(1): Let V.0 := {w € V% : w is cont., p.l. on a partition of I, w(0) = w(1) = 0}

1 1 1 1
(9) FindUEV}?: / U’v’dx+2/ U'Uda:+/ Uvdx:/ fvdz, YveVy.
0 0 0 0

From (1)-(2), we find The Galerkin orthogonality:

(10) /01 ((u —U)"v +2(u—-U)v+ (u— U)’U) dr =0, YoveV.

We define the inner product (-,-) g associated to the energy norm to be
(v,w)p = /Ol(v'w’ + vw) dz, Yo, w e VO,

Note that

(11) 2/01 dedr =[]} =0

Thus using (11) we have

1 1
(12) lell2, = / (€€’ + ee) di = / (e + 2 + ce) da.
0 0

We split the second factor e ase =u—U =u — v+ v — U, with v € V}, and write

4



where, in the last step, we have used the Galerkin orthogonality to eliminate terms involving U.
Now we can write

1
lle]|% :/ (e’(u —v) +2€¢(u—v) +e(u— v)) dx
0
<2/le'|| - [lu—vlle +lell - |lu— ]|
< 2llellg - [lu—vl[e

and derive the a priori error estimate:

llelle < [lu —vlle(1 +a), Vv € Vh.

To obtain a posteriori error estimates the idea is to eliminate u-terms, by using the differential
equation, and replacing their contributions by the data f. Then this f combined with the remaining
U-terms would yield to the residual error:

A posteriori error estimate:

1 1
llel|% :/ (e'e’ + ee)dx = / (e'e’ + 2¢'e + ee) dx
0 0
(13 1 1
:/ (u'e’ +2u'e + ue) dx — / (U'e' +2U'e + Ue) dux.
0 0

Now using the variational formulation (8) we have that

1 1
/ (u'e + 2u'e + ue) dz = / fedz.
0 0

Inserting in (13) and using (9) with v = IIye we get

1 1
lelly = [ fede— [ W' +20%c + U0 do
(14) 0 0

1 1
+ / (U'Tlpe’ + 2U Tl Le + Ullpe) dx — / fpedx.
0 0
Thus

llel|% :/01 fle —Tlxe) cl;z:—/o1 (U’(e—Hhe)’—i—QU’(e—Hhe) +U(e—Hhe)) dx

M+1

' ' / / /
:/0 f(e—Hhe)dx—/O (2U +U)(e—Hhe)dx—;/I'IU(e—Hhe) dx

J
={partial integration}
M+1

' ' / "
:/0 f(ethe)dwf/O (2U +U)(6Hhe)dx+jz:1/1,-U (e — ye) dx

:/ (f+U”—2U’—U)(e—Hhe)da::/ R(U)(e — Tlye) dz
0 0

1
= [ R e~ M) do < IR 1 Ih e = Tae) .
0
< Gl |hRU) ||, - |l€'[lL, < |[RRU)|L, - [lelle-
This gives the a posteriori error estimate:
llelle < Cil|hR(U)|| L,

with R(U) = f+U"-2U' - U =f—-2U"—U on (x;_1,2;), t=1,..., M+ 1.
5




5. Solution: The variational formulation to this problems reads, find v € V' such that
(15) a(u,v) = (f,v), Yv eV,
where

a(u,v):/QVu-VU, (f,v):/vada:,

and

V:={v: vis continuous on Q and v =0on I'}

Considering a triangulation 7}, with elements K so that {2 = Uge7;, K and the mesh size h as the
maximum diameter of triangles K € 7}, we define the finite element space

Vi, :={v: v is continuous on Qv|k is linear for K € T, and v =0 on I'}.

With the standard continuous piecewise linear bases function ;, the finite element representation
for v € V}, is

M
v(z) = Zgjgoj(x), & =v(N;), xze€QUT, N;: j—thnode.
j=1

We can now formulate the finite element method for our problem as: Find uj;, € V} such that

(16) a(up,v) = (f,v) Yv € V.

Subtracting (15) and (16) we have that

(17) ale,v) =0 Yv € Vy,

where e = u — up. Now let ¢ be the solution of the following auxiliary dual problem:
(18) —Ayp=e, in Q, =0 on I.

Now using the first hint (with s = 0) we get

(19) Y]] m20) < CllellL, )

where the constant C' does not depend on e. Using Green’s formula and the fact that e =0 on I
yields

(6, 6) = —(6, A¢) = a(67 ¢) = a(ev "/} - th)v

where the last equality follows from (17) since mpe) € Vj, so that a(e,mp10) = 0. Applying the
interpolation estimate (hint 2) and using (19) we get

(20) lellZ, ) < llellzr@llv — mndlla @) < Cllella@hlvlr2(@)
< Chllel| o llel Lo

Now dividing by |e||, () and using the first oder estimate

(21) ||e||H1(Q) < Ch‘ulHZ(Q),

we finally get the desires estimate

HEHLZ(Q) S ChHEHHl(Q) S Ch2|U|H2(Q).
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6. Solution: Inserting the ansatz in equation yields
—ety — e Av = ¢4, ie. —Av—v=
Now letting v = w/r we end up with the equation
—w" —w =0,
with the solution
w(r) = acos(r) + bsin(r), r> 0.
FAqr the solution the equality @ = ;= should be valid (just compare with the solution v = ;-1
of the equation —Awv = §), while b may be choosen arbitrary, e.g. b = 0 (note that % solves the
homogeneous equation —Av — v = 0). Thus we have found the solution
1 cos(r)

b
4dr r

and hence the corresponding
. eiti cos(r)
4r 7



