
Mathematics Chalmers & GU

TMA372/MMG800: Partial Differential Equations, 2020–08–27, 8:30-12:30

Telephone: Mohammad Asadzadeh: ankn 3517
An open book exam.
Each problem gives max 6p. Valid bonus points will be added to the scores.
Breakings for Chalmers; 3: 15-21p, 4: 22-28p, 5: 29p-, and for GU; G: 15-26p, VG: 27p-

1. Let u(x) be a function such that u(1) = 3 and u(2) = −1 and∫ 2

1

xu′(x)v′(x) dx = 0, ∀v : v(1) = v(2) = 0.

a) Which differential equation and including boundary data solves u?

b) Formulate a suitable finite element method for the problem

c) Give a suitable a priori error estimate for this problem.

2. Determine if the assumptions of the Lax-Milgram theorem are satified for

a(v, w) =

∫
I

v′w′ dx+ v(0)w(0), I = (0, 1), L(v) =

∫
I

fv dx, f ∈ L2(I), V = H1(I).

3. Determine the stifness matrix and load vector in cG(1) finite element method applied to Poisson
equation

−∆u = 2 in Ω = {(x, y) : 0 < x < 2, 0 < y < 1},
with a combination of, homogeneous, Neumann boundary conditions at Γ2 := {(2, y) : 0 < y < 1}
and Dirichlet boundary condition at Γ1 := ∂Ω \Γ2, on a mesh with stepsize 2/3 in the x-direction
and 1/3 in y-direction.

4. Derive an a posteriori error estimate for the cG(1) solution of the problem

−u′′ + 2u′ + u = f, in I = (0.1), u(0) = u(1) = 0,

in the energy norm ||v||2E = (v, v) =
∫
I
(v′2 + v2) dx, (f ∈ L2(I)).

5. Let Ω be a convex polygonal domain and uh, the continuous piecewise linear, finite element
solution of the Poisson equation {

−∆u = f in Ω
u = 0 on Γ.

Show that there is a constant C independent of u and h such that

||u− uh||L2(Ω) ≤ Ch2|u|H2(Ω).

Hint: Assume that, for the inhomogeneous equation −∆u = f , with f ∈ Hs(Ω),

||u− uh||Hs+2(Ω) ≤ C||f ||Hs(Ω).

Use also the interpolation estimate:

||u− πhu||L2(Ω) ≤ Ch2|u|H2(Ω).

6. Let δ denote Dirac delta function and i =
√
−1. Find a solution for the 3D-problem

ü(x, t)−∆u(x, t) = eitδ(x), x ∈ R3.

Hint: Set u = eitv, with v(x) = w(x)/r wgere r = |x|. One can show that rv = w → 1
4π as r → 0.
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Solutions.

1. Solution: Partial integration with boundary data v(1) = v(2) = 0 gives

(1) 0 =

∫ 2

1

xu′v′ dv = −
∫ 2

1

(xu′)′x dx,

which, since v = v(x) is arbitrary, yields(
x (u′(x)

)′
= 0, u(1) = 3, u(2) = −1.

Now consider the partition Th : 1 = x0 < x1 < . . . < xM+1 = 2, subintervals Ik = (xk−1, xk), and
the subspace

Vh := {v = v(x) : v is continuous, and v|Ik is linear ∀k},
and

V 0
h := {v ∈ Vh : v(1) = v(2) = 0}.

FEM: Vi seek uh ∈ Vh such that uh(1) = 3, uh(2) = −1 and

(2)

∫ 2

1

xu′hv
′ dv = 0, ∀v ∈ V 0

h .

From the subtraction (1)-(2) one gets∫ 2

1

x(u′ − u′h) v′ dx = 0, ∀v ∈ V 0
h .

Then with the L2-norm: || · ||, on (1, 2) we have

||
√
x(u′ − u′h)||2 =

∫ 2

1

x(u′ − u′h) (u′ − u′h) dx∫ 2

1

x(u′ − u′h) (u′ − u′h − v) dx

≤ ||
√
x(u′ − u′h)||||

√
x(u′ − u′h − v)||.

Now a suitable choice of v, interploating u− uh yields

||
√
x(u′ − u′h)|| ≤ ||

√
x(u′ − u′h − v)|| ≤ Ci||

√
xhu′′||.

2. Solution: For the formulation of the Lax-Milgram theorem see the book, Chapter 2.

As for the given case: I = (0, 1), f ∈ L2(I), V = H1(I) and

a(v, w) =

∫
I

(v′w′) dx+ v(0)w(0), L(v) =

∫
I

fv dx,

it is trivial to show that a(·, ·) is bilinear and b(·) is linear. We have that

(3) a(v, v) =

∫
I

(v′)2 dx+ v(0)2 ≥ 1

2

∫
I

(v′)2 dx+
1

2
v(0)2 +

1

2

∫
I

(v′)2 dx.

Further

v(x) = v(0) +

∫ x

0

v′(y) dy, ∀x ∈ I

implies

v2(x) ≤ 2
(
v(0)2 + (

∫ x

0

v′(y) dy)2
)
≤ {C − S} ≤ 2v(0)2 + 2

∫ 1

0

v′(y)2 dy,
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so that
1

2
v(0)2 +

1

2

∫ 1

0

v′(y)2 dy ≥ 1

4
v2(x), ∀x ∈ I.

Integrating over x we get

(4)
1

2
v(0)2 +

1

2

∫ 1

0

v′(y)2 dy ≥ 1

4

∫
I

v2(x) dx.

Now combining (3) and (4) we get

a(v, v) ≥ 1

4

∫
I

v2(x) dx+
1

2

∫
I

(v′)2(x) dx

≥ 1

4

(∫
I

v2(x) dx+

∫
I

(v′)2(x) dx
)

=
1

4
||v||2V ,

so that we can take κ1 = 1/4. Further

|a(v, w)| ≤
∣∣∣ ∫
I

v′w′ dx
∣∣∣+ |v(0)w(0)| ≤ {C − S} ≤ ||v′||L2(I)||w′||L2(I) + |v(0)||w(0)|

≤ ||v||V ||w||V + |v(0)||w(0)|

Now we have that

(5) v(0) = −
∫ x

0

v′(y) dy + v(x), ∀x ∈ I,

and by the Mean-value theorem for the integrals: ∃ξ ∈ I so that v(ξ) =
∫ 1

0
v(y) dy. Choose x = ξ

in (5) then

|v(0)| =
∣∣∣− ∫ ξ

0

v′(y) dy +

∫ 1

0

v(y) dy
∣∣∣

≤
∫ 1

0

|v′| dy +

∫ 1

0

|v| dy ≤ {C − S} ≤ ||v′||L2(I) + ||v||L2(I) ≤ 2||v||V ,

implies that

|v(0)||w(0)| ≤ 4||v||V ||w||V ,
and consequently

|a(u,w)| ≤ ||v||V ||w||V + 4||v||V ||w||V = 5||v||V ||w||V ,

so that we can take κ2 = 5. Finally

|L(v)| =
∣∣∣ ∫
I

fv dx
∣∣∣ ≤ ||f ||L2(I)||v||L2(I) ≤ ||f ||L2(I)||v||V ,

taking κ3 = ||f ||L2(I) all the conditions in the Lax-Milgram theorem are fulfilled.

3. Solution: We use the notation (x, y) = (x1, x2) and hence Γ1 := ∂Ω\Γ2 where Γ2 := {(2, x2) :
0 ≤ x2 ≤ 1}. Define

V = {v : v ∈ H1(Ω), v = 0 on Γ1}.
Multiply the equation by v ∈ V and integrate over Ω; using Green’s formula∫

Ω

∇u · ∇v −
∫

Γ

∂u

∂n
v =

∫
Ω

∇u · ∇v = 2

∫
Ω

v,

where we have used Γ = Γ1 ∪ Γ2 and the fact that v = 0 on Γ1 and ∂u
∂n = 0 on Γ2.

Variational formulation: Find u ∈ V such that∫
Ω

∇u · ∇v = 2

∫
Ω

v, ∀v ∈ V.

FEM: cG(1):
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Find U ∈ Vh such that

(6)

∫
Ω

∇U · ∇v = 2

∫
Ω

v, ∀v ∈ Vh ⊂ V,

where

Vh = {v : v is piecewise linear and continuous in Ω, v = 0 on Γ1, on the given mesh }.

A set of bases functions for the finite dimensional space Vh can be written as {ϕi}6i=1, where{
ϕi ∈ Vh, i = 1, 2, 3, 4, 5, 6
ϕi(Nj) = δij , i, j = 1, 2, 3, 4, 5, 6

Then the equation (6) is equivalent to: Find U ∈ Vh such that

(7)

∫
Ω

∇U · ∇ϕi = 2

∫
Ω

ϕi, i = 1, 2, 3, 4, 5, 6.

Set U =
∑6
j=1 ξjϕj . Invoking in the relation (3) above we get

6∑
j=1

ξj

∫
Ω

∇ϕj · ∇ϕi = 2

∫
Ω

ϕi, i = 1, 2, 3, 4, 5, 6.

Now let aij =
∫

Ω
∇ϕj · ∇ϕi and bi =

∫
Ω
ϕi, then we have that

Aξ = b, A is the stiffness matrix b is the load vector.

To compute compute aij and bi we note that area of the standard element T , with base = 2/3
and hight = 1/3, is

|T | = 1/2 · 2/3 · 1/3 = 1/9

and the bases functions, and their gradients, for the standard element, with base = 2/3 and hight
= 1/3, are

 φ1(x, y) = 1− 3(x2 + y)
φ2(x, y) = 3

2x
φ3(x, y) = 3y

=⇒



∇φ1(x, y) = −3

[
1
2
1

]
∇φ2(x, y) = 3

[
1
2
0

]
∇φ3(x, y) = 3

[
0
1

]
.

Thus

bi =

∫
Ω

ϕi =

{
6 · 1

3 · |T | · 1 = 2/9, i = 1, 2, 3, 4
3 · 1

3 · |T | · 1 = 1/9, i = 5, 6.

and the standard stiffness matrix elements are

s11 = (∇φ1, ∇φ1) =
∫
T
∇φ1 · ∇φ1 = 1

9 · 9( 1
4 + 1) = 5

4
s12 = (∇φ1, ∇φ2) =

∫
T
∇φ1 · ∇φ2 = 1

9 · (−9) 1
4 = − 1

4
s13 = (∇φ1, ∇φ3) =

∫
T
∇φ1 · ∇φ3 = 1

9 · (−9) · 1 = −1
s22 = (∇φ2, ∇φ2) =

∫
T
∇φ2 · ∇φ2 = 1

9 · 9 ·
1
4 = 1

4
s23 = (∇φ2, ∇φ3) =

∫
T
∇φ2 · ∇φ3 = 0

s33 = (∇φ3, ∇φ3) =
∫
T
∇φ3 · ∇φ3 = 1

9 · 9 · 1 = 1.

and hence the local element-stiffness matrix, taking the symmetry into account, is:

S =

 5/4 −1/4 −1
−1/4 1/4 0
−1 0 1


To compute elements aij for the global stiffeness matrix A we have that

aii =

∫
Ω

∇ϕi · ∇ϕi =

{
2 · ( 5

4 + 1
4 + 1) = 5, i = 1, 2, 3, 5

5
4 + 1

4 + 1 = 5/2, i = 5, 6
3



Further 
a12 = a34 = 2s13 = −2
a13 = a24 = a35 = a46 = 2s12 = − 1

2
a14 = a36 = 2s12 = − 1

2
a15 = a16 = a23 = a25 = a26 = a45 = 0
a56 = s13 = −1

Thus we have

A =


5 −2 −1/2 −1/2 0 0
−2 5 0 −1/2 0 0

−1/2 0 5 −2 −1/2 −1/2
−1/2 −1/2 −2 5 0 −1/2

0 0 −1/2 0 5/2 −1
0 0 −1/2 −1/2 −1 5/2

 b =
1

9


2
2
2
2
1
1

 .

4. Solution: The Variational formulation: Let V 0 := H1
0 (0, 1), Multiply the equation by v ∈ V 0,

integrate by parts over (0, 1) and use the boundary conditions to obtain

(8) Find u ∈ V 0 :

∫ 1

0

u′v′ dx+ 2

∫ 1

0

u′v dx+

∫ 1

0

uv dx =

∫ 1

0

fv dx, ∀v ∈ V 0.

cG(1): Let V 0
n := {w ∈ V 0 : w is cont., p.l. on a partition of I, w(0) = w(1) = 0}

(9) Find U ∈ V 0
h :

∫ 1

0

U ′v′ dx+ 2

∫ 1

0

U ′v dx+

∫ 1

0

Uv dx =

∫ 1

0

fv dx, ∀v ∈ V 0
h .

From (1)-(2), we find The Galerkin orthogonality:

(10)

∫ 1

0

(
(u− U)′v′ + 2(u− U)′v + (u− U)v

)
dx = 0, ∀v ∈ V 0

h .

We define the inner product (·, ·)E associated to the energy norm to be

(v, w)E =

∫ 1

0

(v′w′ + vw) dx, ∀v, w ∈ V 0.

Note that

(11) 2

∫ 1

0

e′e dx = [e2]10 = 0

Thus using (11) we have

(12) ||e||2E =

∫ 1

0

(e′e′ + ee) dx =

∫ 1

0

(e′e′ + 2e′e+ ee) dx.

We split the second factor e as e = u− U = u− v + v − U , with v ∈ Vh and write

||e||2E =

∫ 1

0

(
e′(u− U)′ + 2e′(u− U) + e(u− U)

)
dx =

{
v ∈ V 0

h

}
=

∫ 1

0

(
e′(u− v)′ + 2e′(u− v) + e(u− v)

)
dx

+

∫ 1

0

(
e′(v − U)′ + 2e′(v − U) + e(v − U)

)
dx

=

∫ 1

0

(
e′(u− v)′ + 2e′(u− v) + e(u− v)

)
dx,
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where, in the last step, we have used the Galerkin orthogonality to eliminate terms involving U .
Now we can write

||e||2E =

∫ 1

0

(
e′(u− v)′ + 2e′(u− v) + e(u− v)

)
dx

≤ 2||e′|| · ||u− v||E + ||e|| · ||u− v||
≤ 2||e||E · ||u− v||E

and derive the a priori error estimate:

||e||E ≤ ||u− v||E(1 + α), ∀v ∈ Vh.

To obtain a posteriori error estimates the idea is to eliminate u-terms, by using the differential
equation, and replacing their contributions by the data f . Then this f combined with the remaining
U -terms would yield to the residual error:

A posteriori error estimate:

||e||2E =

∫ 1

0

(e′e′ + ee) dx =

∫ 1

0

(e′e′ + 2e′e+ ee) dx

=

∫ 1

0

(u′e′ + 2u′e+ ue) dx−
∫ 1

0

(U ′e′ + 2U ′e+ Ue) dx.

(13)

Now using the variational formulation (8) we have that∫ 1

0

(u′e′ + 2u′e+ ue) dx =

∫ 1

0

fe dx.

Inserting in (13) and using (9) with v = Πke we get

||e||2E =

∫ 1

0

fe dx−
∫ 1

0

(U ′e′ + 2U ′e+ Ue) dx

+

∫ 1

0

(U ′Πhe
′ + 2U ′Πhe+ UΠhe) dx−

∫ 1

0

fΠhe dx.

(14)

Thus

||e||2E =

∫ 1

0

f(e−Πhe) dx−
∫ 1

0

(
U ′(e−Πhe)

′ + 2U ′(e−Πhe) + U(e−Πhe)
)
dx

=

∫ 1

0

f(e−Πhe) dx−
∫ 1

0

(2U ′ + U)(e−Πhe) dx−
M+1∑
j=1

∫
Ij

U ′(e−Πhe)
′ dx

={partial integration}

=

∫ 1

0

f(e−Πhe) dx−
∫ 1

0

(2U ′ + U)(e−Πhe) dx+

M+1∑
j=1

∫
Ij

U ′′(e−Πhe) dx

=

∫ 1

0

(f + U ′′ − 2U ′ − U)(e−Πhe) dx =

∫ 1

0

R(U)(e−Πhe) dx

=

∫ 1

0

hR(U)h−1(e−Πhe) dx ≤ ||hR(U)||L2 ||h−1(e−Πhe)||L2

≤ Ci||hR(U)||L2
· ||e′||L2

≤ ||hR(U)||L2
· ||e||E .

This gives the a posteriori error estimate:

||e||E ≤ Ci||hR(U)||L2
,

with R(U) = f + U ′′ − 2U ′ − U = f − 2U ′ − U on (xi−1, xi), i = 1, . . . ,M + 1.
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5. Solution: The variational formulation to this problems reads, find u ∈ V such that

(15) a(u, v) = (f, v), ∀v ∈ V,

where

a(u, v) =

∫
Ω

∇u · ∇v, (f, v) =

∫
Ω

fv dx,

and

V := {v : v is continuous on Ω and v = 0 on Γ}

Considering a triangulation Th with elements K so that Ω = ∪K∈ThK and the mesh size h as the
maximum diameter of triangles K ∈ Th we define the finite element space

Vh := {v : v is continuous on Ω v|K is linear for K ∈ Th and v = 0 on Γ}.

With the standard continuous piecewise linear bases function ϕi, the finite element representation
for v ∈ Vh is

v(x) =

M∑
j=1

ξjϕj(x), ξj = v(Nj), x ∈ Ω ∪ Γ, Nj : j − th node .

We can now formulate the finite element method for our problem as: Find uh ∈ Vh such that

(16) a(uh, v) = (f, v) ∀v ∈ Vh.

Subtracting (15) and (16) we have that

(17) a(e, v) = 0 ∀v ∈ Vh,

where e = u− uh. Now let ψ be the solution of the following auxiliary dual problem:

(18) −∆ψ = e, in Ω, ψ = 0 on Γ.

Now using the first hint (with s = 0) we get

(19) ||ψ||H2(Ω) ≤ C||e||L2(Ω),

where the constant C does not depend on e. Using Green’s formula and the fact that e = 0 on Γ
yields

(e, e) = −(e,∆ψ) = a(e, ψ) = a(e, ψ − πhψ),

where the last equality follows from (17) since πhψ ∈ Vh so that a(e, πhψ) = 0. Applying the
interpolation estimate (hint 2) and using (19) we get

||e||2L2(Ω) ≤ ||e||H1(Ω)||ψ − πhψ||H1(Ω) ≤ C||e||H1(Ω)h|ψ|H2(Ω)

≤ Ch||e||H1(Ω)||e||L2(Ω)

(20)

Now dividing by ||e||L2(Ω) and using the first oder estimate

(21) ||e||H1(Ω) ≤ Ch|u|H2(Ω),

we finally get the desires estimate

||e||L2(Ω) ≤ Ch||e||H1(Ω) ≤ Ch2|u|H2(Ω).
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6. Solution: Inserting the ansatz in equation yields

−eitv − eit∆v = eitδ, i.e. −∆v − v = δ.

Now letting v = w/r we end up with the equation

−w′′ − w = 0,

with the solution
w(r) = a cos(r) + b sin(r), r > 0.

FÃ¶r the solution the equality a = 1
4π should be valid (just compare with the solution v = 1

4π
1
r

of the equation −∆v = δ), while b may be choosen arbitrary, e.g. b = 0 (note that sin r
r solves the

homogeneous equation −∆v − v = 0). Thus we have found the solution

v =
1

4r

cos(r)

r
,

and hence the corresponding

u = eit
1

4r

cos(r)

r
.
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