Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2018—-06—-07, 14:00-18:00

Telephone: Barbara Schnitzer: ankn 5325

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-21p, 4: 22-28p och 5: 29p- GU: G: 15-25p, VG: 26p-

For solutions and information about gradings see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1718 /coursediary

1. Consider the Dirichlet boundary value problem
-V (a(z)Vu) = f(z), z€QCR? u =20, for x € 90.

Assume that ¢g and ¢; are constants such that ¢y < a(z) <c¢;, Vo € Qand let U = Zjvzl a;w;(z)
be a Galerkin approximation of  in a finite dimensional subspace M of H}(2). Prove the a priori
error estimate below and specify C' as best you can

lu = Ullmp o) < Cxlél]& lu = x|z (0)-

2. Consider the heat equation

uw—u" =0, 0O<z<l1l, t>0,
uw(0,t) =/ (1,¢t) =0, t>0,
u(z,0) = uo(z), 0<z<l
. 1 2 1/2 ’ . . . .
a) Show, with ||ul|| = (fo u(x) dm) , that ||u|| and ||u/|| are not increasing in time.

b) Show that ||u'|] — 0, as ¢ — co. Give a physical interpretation for a) and b).

3. Prove a posteriori error estimate, in the energy norm ||v||%, = [|v/||* + a|[v||?, for the ¢G(1)
approximation of the boundary value problem

—u"(z) + v/ (z) + au(z) = f(z), 0<z<1l, u(0)=u(l)=0, a=>0.

4. a) Formulate a ¢G(1) finite element method for the following system

u(z) +v"(z) = f(z), v(0)=v(1)=0, 0<z<]1,

u”(z) —v(x) =0, u(0) =u(l) =0,
and show how the approximate solution (U, V') can be computed from the load vector F, using
mass- and stiffness matrises.
b) Derive stability estimates for « and v, in terms of f, (e.g., through multiplying the first equation
by v and the second by u).
5. Consider the following Schrédinger equation

U+ iAu=0, inQ, u =0, on 99,
where i = /—1 and u = u; + tug. a) Show that the toatal probability fQ |u|? is time independent.
Hint: Multiply the equation by @ = u; — ius, integrate over {2 and consider the real part.
b) Consider the corresponding eigenvalue problem, of finding (A, u # 0), such that
—Au=MAu in Q, u=0, on 0f.

Show that A > 0. Give the relation between ||u|| and ||Vul| for the corresponding eigenfunction u.
¢) What is the optimal constant C' (expressed in terms of smallest eigenvalue A1), for which the
inequality ||u|| < C||Vul| can fullfil for all functions u, such that « = 0 on 97

6. Formulate and prove the Lax-Milgram theorem (Lecture Notes/Compendium version).
MA
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TMA372/MMG800: Partial Differential Equations, 2018-06—07, 14:00-18:00.
Solutions.

1. Recall the continuous and approximate weak formulations:

(1) (aVu,Vv) = (f,v), Vv € H} (Q),
and

(2) (aVU,Vv) = (f,v), Yo e M,
respectively, so that

(3) (aV(u—-U),Vv) =0, Yv e M.

We may write
u—U=u—-x+x-"U,
where x is an arbitrary element of M, it follows that
(aV(u—=0U),V(u—-U)) =(aV(u—-U),V(u—Xx))
(4) <|[aV(u =) [lu = x|z
<allu=Ullgg o llu = xlla @)

on using (3), Schwarz’s inequality and the boundedness of a. Also, from the boundedness condition
on a, we have that

(5) (aV(u—U),V(u=U)) > collu—Ullfq)-
Combining (4) and (5) gives
C1
llu = Ullgy o) < a”u = XllHz(9)-
Since x is an arbitrary element of M, we obtain the result.

2. a) Multiply the equation @& = v’ by w and integrate over z € (0, 1):

ld\l 2 /l'd /1 "udz = {part. int.}
—— U = uu ar = u uadr = p‘I‘.lIl.

1
= u'ul} 7/ u'v' de = —||u'||? <0,
0

i.e., ||lul|?> and hence |u|| is decreasing in t.
Now multiply the equation @ = u” by —u” and integrate over x € (0,1):

1d 1 1
—— / v de = | — / wu” dz
0 0

12
il
1
— _/ ’LL"U” dm _ _||u//||2 S O7
0

i.e., ||u’||? and hence ||u’|| is decreasing in t.
b) According the first relation above 1<|ju|[? + [[u/||> = 0. Integrating over ¢ yields:

1 2 ¢ 2 1 2
PO+ [P ar = Gl

Thus, it follows that fooo |lu/]|? dt must converge, which is possible only if the decreasing function
"|? tends to 0 as t — oo, i.e., ||u[| — 0 as t — oo.
1

[u



¢) In the absence of a heat source, the temperature and heat flux are decreasing (non-increasing)
in time, especially the heat flux tends to 0 as t — oco.

3. (a) The Variational formulation:

(Multiply the equation by v € V, integrate by parts over (0,1) and use the boundary conditions.)

(6) Find u € V : /Olu’v'dm+/01u’vdx+/olauvdas—/Olfvdas, Vv € V.
cG(1):

1 1 1 1
(7 Find U € V, : /OU'v’dm+/0 U/vdx—i—/o aUvdx:/O fodr, YveV,
where

V3, := {v : v is continuous piecewise linear in (0,1), v(0) = v(1) = 0}.

From (1)-(2), we find

The Galerkin orthogonality:

(8) /01 ((uf U)Yv' + (u—U)v+a(u— U)v) dz =0, Yv€eV,.

We define the inner product (-,-) g associated to the energy norm to be

1
(v, w)g = / (v'w' + avw) dz, Yo, w e V.
0

A posteriori error estimate: We have that

1 1
llel|% :/0 (e'e’ + aee) dx = /0 (e'e’ +€'e + aece) dx
1 1
:/ (u'e’ +u'e + aue) dr — / (U'e +U'e+alUe) dx.
0 0

Thus using (1) we get
1 1
(9) H€H2E:/ fedﬂﬁ—/ (U'e +U'e +alUe) du,
0 0
which by (2) can be written as
1 1
lelly = [ fede— [ (@€ + Ve +atre)do
0 0

1 1
+ / (U’(Hhe)’ + U'Tlpe + aUHhe) dx — / fIledx.
0 0
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Observe that the last line above is identically 0. Adding up we have

1 1
llel|% :/ fle —Tlpe) dx — / (U’(e —Ipe) +U'(e — ye) + al(e — H;le)) dx
0 0
1 1 M1
:/ fle —Tlpe)dx — / (U’ + aU)(e — pe) dz — Z / U'(e — Hpe) dz
0 0 =L
={partial integration}
M+1

Z/ U" (e — ye) dx
j=1 71

=/01(f +U" U —aU)(e — ye) do = /01 R(U)(e — ye) dz

:/01 Fle—Thpe) da — /Ol(U’ + al)(e — Tpe) dr +

1
:/ hR(U)h™ (e — pe) dz < [|AR(U)|| L, |Ih ™" (e — Tne) |l L,
0
< CGillhRU)||L, - €'l L, < Cil[RR(U)||L, - [lel| -
This gives the a posteriori error estimate:
llelle < Cil[hR(U)]| L.,
with R{U)=f4+U"-U' —aU=f—-U"—aU, on (xj—1,2z;), i=1,...,.M + 1.

4. a) Multiplying the equations in the system by the test functions ¢ and %, with ¢ = ¢ = 0 for
x =0 and x = 1, and integrating by parts gives that

fol (pu— ') = fol of,
1o { v g =0,

Partitioning of [0,1] into subintervals (elements) I; = [zj_1,%;], z; = j/(m + 1), the linear
approximations U(z) = >, Ujp;(x) and V(z) = 37", Vip;(z), with ¢;(z) s being the usual
piecewise linear basis functions, the ¢G(1) approximation of the above system (4) can be formulated
as: Find the nodal values U; and V; such that

(11) foi(@iU_SOQV/):fOl(pf’ i=1,....m,
Jo (=eiU" — V) =0, i=1,...,m.

This gives 2m equations with the 2m unkown nodal values U = [U1,...,U,|T and V = [V4, ..., V)7,
which can be written in the matrix form as
{ MU — SV = F,

(12) —SU — MV =0,

where M and S are the usual, 3-diagonal, mass- and stiffness matrises, respectively: M has 2h/3
diagonal elements and h/6 super and subdiagonal elements. Corrseponding elements for S are 2/h
diagonal elements and —1/h sub and superdiagonal elements. All other elemts are zeros. F' is the

load vector with elements fol oif.

From the second equation above we get that V = —M ~'SU, which inserting in the first equation
gives U = (M + SM~1S)~1F.

b) Multiply the first equation by u and the second equation by —v, add the two resulting equations
and integrate over [0, 1]. By partial integration we have then

1 1
/ u2+v2:/ wf,
0 0

3



Using Cauchy-Schwartz inequality we get

1
1 1
[Tl + ol :/O uf < llllf] < Sl + 5117

This gives that ||u|| < ||f]|, and consequently even ||v]| < ||f]]-

We could alternatively multiply the first equation by —v and the second by —u, add the two
resulting equations and integrate over [0, 1]. By partial integration we have this time

/0 W) 4 () = /0 o,

Using, first Poincare’, and then the Cauchy-Schwartz inequality we get
1 1
112+ [ < Il < AL < S0P+ S AP,

so that we have now ||v'|| < ||f||, and consequently even ||u’|| < || f||. We could obviously continue
in this manner and get basic stability estimates for the, e.g., moment v = u”, through

1] = [[vl| < [I£]I,
and for v”:
[0 |] = [1f = ull < A+ Mull < 2[[£]]-

5. a) We multiply the shrédinger equation by @ and integrate over € to obtain

/ ’U,U—FZ/ uVu = / (Uﬂll —|—UQ’I.J,2) —|—i/(u11l2 —ugtty — Vu - V’LL) =0.
Q Q Q Q
Now both real and imaginary part of the above expression is 0. Thus, considering the real part,

we have 19
/Q(Ulitl + uglip) = 3ot /Q(U? +u3) =0,

therefore [, |u|? is independent of the time.

b) Multiplying the eigenvalue equation —Au = Au by u, integrating over €2, and using partial

integration we get
)\/ u? =/u(fAu) = [ |Vul?,
Q Q Q

which gives A > 0 (and also A > 0, for u # 0). Further ||u|| = %HVuH This indicates that the

constant in the estimate ||u|| < C||Vu||, satisfying for all functions v with w = 0 on T' := 99,
can not be smaller than ﬁ, with A\; > 0 being the smallest eigenvalue. As a matter of fact we
have the inequality ||u|| < \/%—1||Vu|\7 for all w with w = 0 on I'. This is due to the fact that
we can represent u in terms of orthogonal eigenfunctions both “with and without gradient”, i.e.

Jouiug = [, Vu; - Vuy =0, for i # j.

6. See the Lecture Notes.
MA



