Mathematics Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2016-08-24, 8:30-12:30

Telephone: Edvin Wedin: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6 p. Valid bonus poits will be added to the scores.
Breakings: 3: $15-21$ p, 4: 22-28p och 5: 29p- For GU students G: 15-26p, VG: 27 p -
For solutions see the couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1516/

1. Let $\pi_{1} f(x)$ be the linear interpolant of a, twice continuously differentiable, function f on an interval $I=(a, b)$. Prove the following optimal interpolation error estimate fotr the first derivative:

$$
\left\|f^{\prime}-\left(\pi_{1} f\right)^{\prime}\right\|_{L_{\infty}(a, b)} \leq \frac{1}{2}(b-a)\left\|f^{\prime \prime}\right\|_{L_{\infty}(a, b)}
$$

Note: It is importat to derive the error estimate with the interploation constant $1 / 2$.
2. Let $b \geq 0$, consider the problem

$$
\ddot{u}+b \dot{u}-u^{\prime \prime}=0 \quad 0<x<1 \quad u(0, t)=u(1, t)=0 .
$$

a) Describe the phenomena that these equations can model. What is the meaning of each term?
b) Prove that there is a natural energy associted with the solution u, which is preserved in time (as t increases) for $b=0$, and decreases as time increases for $b>0$.
3. Consider the problem

$$
\begin{equation*}
-\Delta u(x)+u(x)=f(x) \quad \text { for } \quad x \in \Omega \subset \mathbb{R}^{d} \quad \mathbf{n} \cdot \nabla u(x)=g(x) \quad x \in \Gamma:=\partial \Omega \tag{1}
\end{equation*}
$$

where \mathbf{n} is the outward unit normal to Γ and f and g are given functions Use the inequality $\|u\|_{L_{2}(\Gamma)} \leq C_{\Omega}\left(\|\nabla u\|_{L_{2}(\Omega)}+\|u\|_{L_{2}(\Omega)}\right)$ and show the stabilty estimate:

$$
\|\nabla u\|_{L_{2}(\Omega)}^{2}+\|u\|_{L_{2}(\Omega)}^{2} \leq C\left(\|f\|_{L_{2}(\Omega)}^{2}+\|g\|_{L_{2}(\Gamma)}^{2}\right)
$$

4. Compute the stiffness and mass matrices as well as load vector for the $\mathrm{cG}(1)$ approximation for

$$
-\varepsilon \Delta u+u=3, \quad x \in \Omega ; \quad u=0, \quad x \in \partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right), \quad \nabla u \cdot n=0, \quad x \in \Gamma_{1} \cup \Gamma_{2}
$$

where $\varepsilon>0$ and n is the outward unit normal to $\partial \Omega$, (obs! 3 nodes N_{1}, N_{2} and N_{3}, see Fig.)

5. Formulate the Lax-Milgram theorem. Verify the assumptions of the Lax-Milgram Theorem and determine the constants of the assumptions in the case: $I=(0,1), f \in L_{2}(I), V=H^{1}(I)$ and

$$
a(v, w)=\int_{I}\left(u w+v^{\prime} w^{\prime}\right) d x+v(0) w(0), \quad L(v)=\int_{I} f v d x . \quad\|w\|_{V}^{2}=\|w\|_{L_{2}(I)}^{2}+\left\|w^{\prime}\right\|_{L_{2}(I)}^{2}
$$

void!

TMA372/MMG800: Partial Differential Equations, 2016-08-24, 8:30-12:30.

Solutions.

1. We have that

$$
\pi_{1} f(x)=\lambda_{a}(x) f(a)+\lambda_{b}(x) f(b)=f(a) \frac{b-x}{b-a}+f(b) \frac{x-a}{b-a} \Longrightarrow
$$

$$
\begin{equation*}
\left(\pi_{1} f(x)\right)^{\prime}=\frac{1}{b-a}(f(b)-f(a)) \tag{2}
\end{equation*}
$$

By Taylor expansions of $f(b)$ and $f(a)$ about x : We have that $\exists, \eta_{b} \in(x, b)$ and $\eta_{a} \in(a, x)$:

$$
\begin{align*}
& f(b)=f(x)+(b-x) f^{\prime}(x)+\frac{1}{2}(b-x)^{2} f^{\prime \prime}\left(\eta_{b}\right) \tag{3}\\
& f(a)=f(x)+(a-x) f^{\prime}(x)+\frac{1}{2}(a-x)^{2} f^{\prime \prime}\left(\eta_{a}\right)
\end{align*}
$$

so that

$$
f(b)-f(a)=(b-a) f^{\prime}(x)+\frac{1}{2}(b-x)^{2} f^{\prime \prime}\left(\eta_{b}\right)-\frac{1}{2}(a-x)^{2} f^{\prime \prime}\left(\eta_{a}\right)
$$

Inserting in (2) yields

$$
\begin{gathered}
\left(\pi_{1} f(x)\right)^{\prime}=f^{\prime}(x)+\frac{1}{2} \frac{1}{b-a}\left((b-x)^{2} f^{\prime \prime}\left(\eta_{b}\right)-(a-x)^{2} f^{\prime \prime}\left(\eta_{a}\right)\right) \\
\left|\left(\pi_{1} f(x)\right)^{\prime}-f^{\prime}(x)\right| \leq \frac{1}{2(b-a)} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|\left((b-x)^{2}+(a-x)^{2}\right)
\end{gathered}
$$

Let now $g(x)=(b-x)^{2}+(a-x)^{2}$, then g is convex, symmetric and hence has its maximum at the endpoints of the interval $I=[a, b] g_{\max }=g(a)=g(b)=(b-a)^{2}$. Thus

$$
\left|\left(\pi_{1} f(x)\right)^{\prime}-f^{\prime}(x)\right| \leq \frac{1}{2} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|
$$

which is the desired result.
Not that $g^{\prime}(x)=0$ yields to the minimipoint $x_{\min }=(a+b) / 2$ and $g\left(x_{\min }\right)=(b-a)^{2} / 2$.
2. a) $\ddot{u}+b \dot{u}-u^{\prime \prime}=0$ models, e.g. the transversal oscillation of a wire fixed at its two endpoints, where $u(x, t)$ is the displacement coordinates.
Te terms are corresponding to inertia, friction (from the surrounding media) and the resultant powers of all tension and stress.

b) Multiplying the equation by \dot{u} and integrating in spatial variable over $[0,1]$ tields

$$
\frac{1}{2} \frac{d}{d t}\left(\|\dot{u}\|^{2}+\left\|u^{\prime}\right\|^{2}\right)+b\|\dot{u}\|^{2}=0
$$

Hence considering the Energy as

$$
E(u)=\frac{1}{2}\|\dot{u}\|^{2}+\frac{1}{2}\left\|u^{\prime}\right\|^{2}
$$

we have that

$$
\frac{d}{d t} E(u)=-b\|\dot{u}\|^{2}
$$

Thus

$$
\frac{d}{d t} E(u)=0, \quad \text { if } b=0, \quad \text { and } \quad \frac{d}{d t} E(u) \leq 0 \quad \text { if } b>0
$$

3. Multiplying the equation by u and using partial integration (Green's formula) yields

$$
\int_{\Omega}(\nabla u \cdot \nabla u+u u) d x-\int_{\Gamma} \mathbf{n} \cdot \nabla u u d \sigma=\int_{\Omega} f u d x
$$

i.e.

$$
\|\nabla u\|^{2}+\|u\|^{2}=\int_{\Omega} f u d x+\int_{\Gamma} g u d \sigma \leq\|f\|\|u\|+\|g\|_{\Gamma} C_{\Omega}(\|\nabla u\|+\|u\|)
$$

where $\|\cdot\|=\|\cdot\|_{L_{2}(\Omega)}$ and we used the inequality $\|u\| \leq C_{\Omega}(\|\nabla u\|+\|u\|)$. Now using the inequality $a b \leq a^{2}+\frac{1}{4} b^{2}$ we get

$$
\|\nabla u\|^{2}+\|u\|^{2} \leq\|f\|^{2}+\frac{1}{4}\|u\|^{2}+C\|g\|_{\Gamma}^{2}+\frac{1}{4}\|\nabla u\|^{2}+\frac{1}{4}\|u\|^{2}
$$

which gives the desired inequality.
4. Let V be the linear function space defined by

$$
V_{h}:=\left\{v: v \text { is continuous in } \Omega, v=0, \text { on } \partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)\right\} .
$$

Multiplying the differential equation by $v \in V$ and integrating over Ω we get that

$$
-(\Delta u, v)+(u, v)=(f, v), \quad \forall v \in V
$$

Now using Green's formula we have that

$$
\begin{aligned}
-(\Delta u, \nabla v) & =(\nabla u, \nabla v)-\int_{\partial \Omega}(n \cdot \nabla u) v d s \\
& =(\nabla u, \nabla v)-\int_{\partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)}(n \cdot \nabla u) v d s-\int_{\Gamma_{1} \cup \Gamma_{2}}(n \cdot \nabla u) v d s \\
& =(\nabla u, \nabla v), \quad \forall v \in V .
\end{aligned}
$$

Thus the variational formulation is:

$$
(\nabla u, \nabla v)+(u, v)=(f, v), \quad \forall v \in V
$$

Let V_{h} be the usual finite element space consisting of continuous piecewise linear functions satisfying the boundary condition $v=0$ on $\partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)$: The $c G(1)$ method is: Find $U \in V_{h}$ such that

$$
(\nabla U, \nabla v)+(U, v)=(f, v) \quad \forall v \in V_{h}
$$

Making the "Ansatz" $U(x)=\sum_{j=1}^{3} \xi_{j} \varphi_{j}(x)$, where φ_{i} are the standard basis functions, we obtain the system of equations

$$
\sum_{j=1}^{3} \xi_{j}\left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x+\int_{\Omega} \varphi_{i} \varphi_{i} d x\right)=\int_{\Omega} f \varphi_{j} d x, \quad i=1,2,3
$$

or, in matrix form,

$$
(S+M) \xi=F
$$

where $S_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$ is the stiffness matrix, $M_{i j}=\left(\varphi_{i}, \varphi_{j}\right)$ is the mass matrix, and $F_{i}=\left(f, \varphi_{i}\right)$ is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T. The local basis functions are

$$
\begin{aligned}
\phi_{1}\left(x_{1}, x_{2}\right)=1-\frac{x_{1}}{h}-\frac{x_{2}}{h}, & \nabla \phi_{1}\left(x_{1}, x_{2}\right)=-\frac{1}{h}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
\phi_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{h}, & \nabla \phi_{2}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\phi_{3}\left(x_{1}, x_{2}\right)=\frac{x_{2}}{h}, & \nabla \phi_{3}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Hence, with $|T|=\int_{T} d z=h^{2} / 2$,

$$
\begin{aligned}
& m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=h^{2} \int_{0}^{1} \int_{0}^{1-x_{2}}\left(1-x_{1}-x_{2}\right)^{2} d x_{1} d x_{2}=\frac{h^{2}}{12} \\
& s_{11}=\left(\nabla \phi_{1}, \nabla \phi_{1}\right)=\int_{T}\left|\nabla \phi_{1}\right|^{2} d x=\frac{2}{h^{2}}|T|=1
\end{aligned}
$$

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision $3)$:

$$
m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=\frac{|T|}{3} \sum_{j=1}^{3} \phi_{1}\left(\hat{x}_{j}\right)^{2}=\frac{h^{2}}{6}\left(0+\frac{1}{4}+\frac{1}{4}\right)=\frac{h^{2}}{12}
$$

where \hat{x}_{j} are the midpoints of the edges. Similarly we can compute the other elements and obtain

$$
m=\frac{h^{2}}{24}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], \quad s=\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

We can now assemble the global matrices M and S from the local ones m and s :

$$
\begin{array}{ll}
M_{11}=8 m_{22}=\frac{8}{12} h^{2}, & S_{11}=8 s_{22}=4 \\
M_{12}=2 m_{12}=\frac{1}{12} h^{2}, & S_{12}=2 s_{12}=-1 \\
M_{13}=0, & S_{13}=2 s_{23}=0 \\
M_{22}=4 m_{11}=\frac{4}{12} h^{2}, & S_{22}=4 s_{11}=4 \\
M_{23}=2 m_{12}=\frac{1}{12} h^{2}, & S_{23}=2 s_{12}=-1 \\
M_{33}=2 m_{22}=\frac{2}{12} h^{2}, & S_{33}=2 s_{22}=1
\end{array}
$$

The remaining matrix elements are obtained by symmetry $M_{i j}=M_{j i}, S_{i j}=S_{j i}$. Hence,

$$
M=\frac{h^{2}}{12}\left[\begin{array}{lll}
8 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right], \quad S=\varepsilon\left[\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
\left(1, \varphi_{1}\right) \\
\left(1, \varphi_{2}\right) \\
\left(1, \varphi_{3}\right)
\end{array}\right]=\left[\begin{array}{l}
8 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{4}{3} \\
4 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{2}{3} \\
2 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{3}
\end{array}\right] .
$$

5. For the formulation of the Lax-Milgram theorem see the book, Chapter 21.

As for the given case: $I=(0,1), f \in L_{2}(I), V=H^{1}(I)$ and

$$
a(v, w)=\int_{I}\left(u w+v^{\prime} w^{\prime}\right) d x+v(0) w(0), \quad L(v)=\int_{I} f v d x
$$

it is trivial to show that $a(\cdot, \cdot)$ is bilinear and $b(\cdot)$ is linear. We have that
(5) $\quad a(v, v)=\int_{I} v^{2}+\left(v^{\prime}\right)^{2} d x+v(0)^{2} \geq \int_{I}(v)^{2} d x+\frac{1}{2} \int_{I}\left(v^{\prime}\right)^{2} d x+\frac{1}{2} v(0)^{2}+\frac{1}{2} \int_{I}\left(v^{\prime}\right)^{2} d x$.

Further

$$
v(x)=v(0)+\int_{0}^{x} v^{\prime}(y) d y, \quad \forall x \in I
$$

implies

$$
v^{2}(x) \leq 2\left(v(0)^{2}+\left(\int_{0}^{x} v^{\prime}(y) d y\right)^{2}\right) \leq\{C-S\} \leq 2 v(0)^{2}+2 \int_{0}^{1} v^{\prime}(y)^{2} d y
$$

so that

$$
\frac{1}{2} v(0)^{2}+\frac{1}{2} \int_{0}^{1} v^{\prime}(y)^{2} d y \geq \frac{1}{4} v^{2}(x), \quad \forall x \in I
$$

Integrating over x we get

$$
\begin{equation*}
\frac{1}{2} v(0)^{2}+\frac{1}{2} \int_{0}^{1} v^{\prime}(y)^{2} d y \geq \frac{1}{4} \int_{I} v^{2}(x) d x \tag{6}
\end{equation*}
$$

Now combining (5) and (6) we get

$$
\begin{aligned}
a(v, v) & \geq \frac{5}{4} \int_{I} v^{2}(x) d x+\frac{1}{2} \int_{I}\left(v^{\prime}\right)^{2}(x) d x \\
& \geq \frac{1}{2}\left(\int_{I} v^{2}(x) d x+\int_{I}\left(v^{\prime}\right)^{2}(x) d x\right)=\frac{1}{2}\|v\|_{V}^{2}
\end{aligned}
$$

so that we can take $\kappa_{1}=1 / 2$. Further

$$
\begin{aligned}
|a(v, w)| & \leq\left|\int_{I} v w d x\right|+\left|\int_{I} v^{\prime} w^{\prime} d x\right|+|v(0) w(0)| \leq\{C-S\} \\
& \leq\|v\|_{L_{2}(I)}\|w\|_{L_{2}(I)}+\left\|v^{\prime}\right\|_{L_{2}(I)}\left\|w^{\prime}\right\|_{L_{2}(I)}+|v(0) \| w(0)| \\
& \leq\left(\|v\|_{L_{2}(I)}+\left\|v^{\prime}\right\|_{L_{2}(I)}\right)\left(\|w\|_{L_{2}(I)}+\left\|w^{\prime}\right\|_{L_{2}(I)}\right)+|v(0) \| w(0)| \\
& \leq \sqrt{2}\left(\|v\|_{L_{2}(I)}^{2}+\left\|v^{\prime}\right\|_{L_{2}(I)}^{2}\right)^{1 / 2} \cdot \sqrt{2}\left(\|w\|_{L_{2}(I)}^{2}+\left\|w^{\prime}\right\|_{L_{2}(I)}^{2}\right)^{1 / 2}+|v(0) \| w(0)| \\
& \leq \sqrt{2}\|v\|_{V} \sqrt{2}\|w\|_{V}+|v(0) \| w(0)| .
\end{aligned}
$$

Now we have that

$$
\begin{equation*}
v(0)=-\int_{0}^{x} v^{\prime}(y) d y+v(x), \quad \forall x \in I \tag{7}
\end{equation*}
$$

and by the Mean-value theorem for the integrals: $\exists \xi \in I$ so that $v(\xi)=\int_{0}^{1} v(y) d y$. Choose $x=\xi$ in (7) then

$$
\begin{aligned}
|v(0)| & =\left|-\int_{0}^{\xi} v^{\prime}(y) d y+\int_{0}^{1} v(y) d y\right| \\
& \leq \int_{0}^{1}\left|v^{\prime}\right| d y+\int_{0}^{1}|v| d y \leq\{C-S\} \leq\left\|v^{\prime}\right\|_{L_{2}(I)}+\|v\|_{L_{2}(I)} \leq 2\|v\|_{V}
\end{aligned}
$$

implies that

$$
\left|v(0)\|w(0) \mid \leq 4\| v\left\|_{V}\right\| w \|_{V},\right.
$$

and consequently

$$
|a(u, w)| \leq 2\|v\|_{V}\|w\|_{V}+4\|v\|_{V}\|w\|_{V}=6\|v\|_{V}\|w\|_{V},
$$

so that we can take $\kappa_{2}=6$. Finally

$$
|L(v)|=\left|\int_{I} f v d x\right| \leq\|f\|_{L_{2}(I)}\|v\|_{L_{2}(I)} \leq\|f\|_{L_{2}(I)}\|v\|_{V}
$$

taking $\kappa_{3}=\|f\|_{L_{2}(I)}$ all the conditions in the Lax-Milgram theorem are fulfilled.
MA

