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TMA372/MMG800: Partial Differential Equations, 2016–08–24, 8:30-12:30

Telephone: Edvin Wedin: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-21p, 4: 22-28p och 5: 29p- For GU students G: 15-26p, VG: 27p-

For solutions see the couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1516/

1. Let π1f(x) be the linear interpolant of a, twice continuously differentiable, function f on an
interval I = (a, b). Prove the following optimal interpolation error estimate fotr the first derivative:

||f ′ − (π1f)
′||L∞(a,b) ≤

1

2
(b− a)||f ′′||L∞(a,b)

Note: It is importat to derive the error estimate with the interploation constant 1/2.

2. Let b ≥ 0, consider the problem

ü+ bu̇− u′′ = 0 0 < x < 1 u(0, t) = u(1, t) = 0.

a) Describe the phenomena that these equations can model. What is the meaning of each term?

b) Prove that there is a natural energy associted with the solution u, which is preserved in time
(as t increases) for b = 0, and decreases as time increases for b > 0.

3. Consider the problem

(1) −∆u(x) + u(x) = f(x) for x ∈ Ω ⊂ R
d n · ∇u(x) = g(x) x ∈ Γ := ∂Ω,

where n is the outward unit normal to Γ and f and g are given functions

Use the inequality ||u||L2(Γ) ≤ CΩ(||∇u||L2(Ω) + ||u||L2(Ω)) and show the stabilty estimate:

||∇u||2L2(Ω) + ||u||2L2(Ω) ≤ C(||f ||2L2(Ω) + ||g||2L2(Γ)
).

4. Compute the stiffness and mass matrices as well as load vector for the cG(1) approximation for

−ε∆u+ u = 3, x ∈ Ω; u = 0, x ∈ ∂Ω \ (Γ1 ∪ Γ2), ∇u · n = 0, x ∈ Γ1 ∪ Γ2,

where ε > 0 and n is the outward unit normal to ∂Ω, (obs! 3 nodes N1, N2 and N3, see Fig.)
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5. Formulate the Lax-Milgram theorem. Verify the assumptions of the Lax-Milgram Theorem and
determine the constants of the assumptions in the case: I = (0, 1), f ∈ L2(I), V = H1(I) and

a(v, w) =

∫

I

(uw + v′w′) dx+ v(0)w(0), L(v) =

∫

I

fv dx. ||w||2V = ||w||2L2(I)
+ ||w′||2L2(I)

.
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Solutions.

1. We have that

π1f(x) = λa(x)f(a) + λb(x)f(b) = f(a)
b− x

b− a
+ f(b)

x− a

b− a
=⇒

(2) (π1f(x))
′ =

1

b− a

(

f(b)− f(a)
)

.

By Taylor expansions of f(b) and f(a) about x: We have that ∃, ηb ∈ (x, b) and ηa ∈ (a, x):

(3) f(b) = f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ηb)

(4) f(a) = f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ηa)

so that

f(b)− f(a) = (b− a)f ′(x) +
1

2
(b− x)2f ′′(ηb)−

1

2
(a− x)2f ′′(ηa).

Inserting in (2) yields

(π1f(x))
′ = f ′(x) +

1

2

1

b− a

(

(b− x)2f ′′(ηb)− (a− x)2f ′′(ηa)
)

|(π1f(x))
′ − f ′(x)| ≤ 1

2(b− a)
max
x∈[a,b]

|f ′′(x)|
(

(b− x)2 + (a− x)2
)

.

Let now g(x) = (b − x)2 + (a − x)2, then g is convex, symmetric and hence has its maximum at
the endpoints of the interval I = [a, b] gmax = g(a) = g(b) = (b− a)2. Thus

|(π1f(x))
′ − f ′(x)| ≤ 1

2
max
x∈[a,b]

|f ′′(x)|.

which is the desired result.

Not that g′(x) = 0 yields to the minimipoint xmin = (a+ b)/2 and g(xmin) = (b− a)2/2.

2. a) ü+ bu̇− u′′ = 0 models, e.g. the transversal oscillation of a wire fixed at its two endpoints,
where u(x, t) is the displacement coordinates.

Te terms are corresponding to inertia, friction (from the surrounding media) and the resultant
powers of all tension and stress.
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b) Multiplying the equation by u̇ and integrating in spatial variable over [0, 1] tields

1

2

d

dt

(

‖u̇‖2 + ‖u′‖2
)

+ b‖u̇‖2 = 0.

Hence considering the Energy as

E(u) =
1

2
‖u̇‖2 + 1

2
‖u′‖2,

we have that
d

dt
E(u) = −b‖u̇‖2.

Thus
d

dt
E(u) = 0, if b = 0, and

d

dt
E(u) ≤ 0 if b > 0.

3. Multiplying the equation by u and using partial integration (Green’s formula) yields
∫

Ω

(∇u · ∇u+ uu) dx−
∫

Γ

n · ∇uu dσ =

∫

Ω

f u dx,

i.e.

‖∇u‖2 + ‖u‖2 =

∫

Ω

f u dx+

∫

Γ

g u dσ ≤ ‖f‖‖u‖ + ||g||ΓCΩ(‖∇u‖ + ‖u‖),

where ‖·‖ = ||·||L2(Ω) and we used the inequality ‖u‖ ≤ CΩ(‖∇u‖+‖u‖). Now using the inequality

ab ≤ a2 + 1
4b

2 we get

‖∇u‖2 + ‖u‖2 ≤ ‖f‖2 + 1

4
‖u‖2 + C||g||2Γ +

1

4
‖∇u‖2 + 1

4
‖u‖2

which gives the desired inequality.

4. Let V be the linear function space defined by

Vh := {v : v is continuous in Ω, v = 0, on ∂Ω \ (Γ1 ∪ Γ2)}.
Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) + (u, v) = (f, v), ∀v ∈ V.

Now using Green’s formula we have that

−(∆u,∇v) = (∇u,∇v)−
∫

∂Ω

(n · ∇u)v ds

= (∇u,∇v)−
∫

∂Ω\(Γ1∪Γ2)

(n · ∇u)v ds−
∫

Γ1∪Γ2

(n · ∇u)v ds

= (∇u,∇v), ∀v ∈ V.

Thus the variational formulation is:

(∇u,∇v) + (u, v) = (f, v), ∀v ∈ V.

Let Vh be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on ∂Ω \ (Γ1 ∪ Γ2): The cG(1) method is: Find U ∈ Vh such
that

(∇U,∇v) + (U, v) = (f, v) ∀v ∈ Vh

Making the “Ansatz” U(x) =
∑3

j=1 ξjϕj(x), where ϕi are the standard basis functions, we obtain
the system of equations

3
∑

j=1

ξj

(

∫

Ω

∇ϕi · ∇ϕj dx+

∫

Ω

ϕiϕi dx
)

=

∫

Ω

fϕj dx, i = 1, 2, 3,

or, in matrix form,
(S +M)ξ = F,
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where Sij = (∇ϕi,∇ϕj) is the stiffness matrix, Mij = (ϕi, ϕj) is the mass matrix, and Fi = (f, ϕi)
is the load vector.
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We first compute the mass and stiffness matrix for the reference triangle T . The local basis
functions are

φ1(x1, x2) = 1− x1

h
− x2

h
, ∇φ1(x1, x2) = − 1

h

[

1
1

]

,

φ2(x1, x2) =
x1

h
, ∇φ2(x1, x2) =

1

h

[

1
0

]

,

φ3(x1, x2) =
x2

h
, ∇φ3(x1, x2) =

1

h

[

0
1

]

.

Hence, with |T | =
∫

T
dz = h2/2,

m11 = (φ1, φ1) =

∫

T

φ2
1 dx = h2

∫ 1

0

∫ 1−x2

0

(1− x1 − x2)
2 dx1dx2 =

h2

12
,

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|2 dx =
2

h2
|T | = 1.

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

m11 = (φ1, φ1) =

∫

T

φ2
1 dx =

|T |
3

3
∑

j=1

φ1(x̂j)
2 =

h2

6

(

0 +
1

4
+

1

4

)

=
h2

12
,

where x̂j are the midpoints of the edges. Similarly we can compute the other elements and obtain

m =
h2

24





2 1 1
1 2 1
1 1 2



 , s =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

We can now assemble the global matrices M and S from the local ones m and s:

M11 = 8m22 =
8

12
h2, S11 = 8s22 = 4,

M12 = 2m12 =
1

12
h2, S12 = 2s12 = −1,

M13 = 0, S13 = 2s23 = 0,

M22 = 4m11 =
4

12
h2, S22 = 4s11 = 4,

M23 = 2m12 =
1

12
h2, S23 = 2s12 = −1,

M33 = 2m22 =
2

12
h2, S33 = 2s22 = 1.
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The remaining matrix elements are obtained by symmetry Mij = Mji, Sij = Sji. Hence,

M =
h2

12





8 1 0
1 4 1
0 1 2



 , S = ε





4 −1 0
−1 4 −1
0 −1 1



 , b =





(1, ϕ1)
(1, ϕ2)
(1, ϕ3)



 =





8 · 1
3 · 1

2 = 4
3

4 · 1
3 · 1

2 = 2
3

2 · 1
3 · 1

2 = 1
3



 .

5. For the formulation of the Lax-Milgram theorem see the book, Chapter 21.

As for the given case: I = (0, 1), f ∈ L2(I), V = H1(I) and

a(v, w) =

∫

I

(uw + v′w′) dx+ v(0)w(0), L(v) =

∫

I

fv dx,

it is trivial to show that a(·, ·) is bilinear and b(·) is linear. We have that

(5) a(v, v) =

∫

I

v2 + (v′)2 dx+ v(0)2 ≥
∫

I

(v)2 dx+
1

2

∫

I

(v′)2 dx+
1

2
v(0)2 +

1

2

∫

I

(v′)2 dx.

Further

v(x) = v(0) +

∫ x

0

v′(y) dy, ∀x ∈ I

implies

v2(x) ≤ 2
(

v(0)2 + (

∫ x

0

v′(y) dy)2
)

≤ {C − S} ≤ 2v(0)2 + 2

∫ 1

0

v′(y)2 dy,

so that
1

2
v(0)2 +

1

2

∫ 1

0

v′(y)2 dy ≥ 1

4
v2(x), ∀x ∈ I.

Integrating over x we get

(6)
1

2
v(0)2 +

1

2

∫ 1

0

v′(y)2 dy ≥ 1

4

∫

I

v2(x) dx.

Now combining (5) and (6) we get

a(v, v) ≥ 5

4

∫

I

v2(x) dx+
1

2

∫

I

(v′)2(x) dx

≥ 1

2

(

∫

I

v2(x) dx+

∫

I

(v′)2(x) dx
)

=
1

2
||v||2V ,

so that we can take κ1 = 1/2. Further

|a(v, w)| ≤
∣

∣

∣

∫

I

vw dx
∣

∣

∣
+
∣

∣

∣

∫

I

v′w′ dx
∣

∣

∣
+ |v(0)w(0)| ≤ {C − S}

≤ ||v||L2(I)||w||L2(I) + ||v′||L2(I)||w′||L2(I) + |v(0)||w(0)|

≤
(

||v||L2(I) + ||v′||L2(I)

)(

||w||L2(I) + ||w′||L2(I)

)

+ |v(0)||w(0)|

≤
√
2
(

||v||2L2(I)
+ ||v′||2L2(I)

)1/2

·
√
2
(

||w||2L2(I)
+ ||w′||2L2(I)

)1/2

+ |v(0)||w(0)|

≤
√
2||v||V

√
2||w||V + |v(0)||w(0)|.

Now we have that

(7) v(0) = −
∫ x

0

v′(y) dy + v(x), ∀x ∈ I,

and by the Mean-value theorem for the integrals: ∃ξ ∈ I so that v(ξ) =
∫ 1

0
v(y) dy. Choose x = ξ

in (7) then

|v(0)| =
∣

∣

∣
−

∫ ξ

0

v′(y) dy +

∫ 1

0

v(y) dy
∣

∣

∣

≤
∫ 1

0

|v′| dy +
∫ 1

0

|v| dy ≤ {C − S} ≤ ||v′||L2(I) + ||v||L2(I) ≤ 2||v||V ,
4



implies that
|v(0)||w(0)| ≤ 4||v||V ||w||V ,

and consequently

|a(u,w)| ≤ 2||v||V ||w||V + 4||v||V ||w||V = 6||v||V ||w||V ,
so that we can take κ2 = 6. Finally

|L(v)| =
∣

∣

∣

∫

I

fv dx
∣

∣

∣
≤ ||f ||L2(I)||v||L2(I) ≤ ||f ||L2(I)||v||V ,

taking κ3 = ||f ||L2(I) all the conditions in the Lax-Milgram theorem are fulfilled.
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