Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations , 2016-03—-16, 14:00-16:00
Telephone: Mohammad Asadzadeh: 031-7725325

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-21p, 4: 22-28p och 5: 29p- For GU students G: 15-26p, VG: 27p-

For solutions see the couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1516/

1. Prove an a posteriori error estimate for piecewise linear finite element method for the boundary
value problem, (the required interpolation estimates can be used without proofs):

—Ugy +uz = f, € (0,1); u(0) = u(1) = 0.

2. Consider the Dirichlet problem
~V - (a(z)Vu) = f(x), x€QCR? u =0, for x € O0N.
Assume that ¢g and ¢; are constants such that ¢y < a(z) <c¢j, Vo € Qand let U = Z;\;l ajw;(x)

be a Galerkin approximation of u in a finite dimensional subspace M of H{ (). Prove the there
is a consctant C' depending on ¢y and c¢; such that we have the a priori error estimate

llu—Ul|gz ) < CXIQL lu = X2 ()

3. Determine the stiffness matrix and load vector if the ¢G(1) finite element method approximation
is applied to the following Poisson’s equation with mixed boundary conditions:

—Au=1, on Q=(0,1) x (0,1), verifying the 5/4 -1 -1/4
g—z =0, for x; =1,(z €Ty) local stiffness: s = -1 1 0
u=0, for € 0Q\{x1 =1} =090\Ty, -1/4 0 1/4
on a triangulation with triangles of side length 1/4 in the x1-direction and 1/2 in the xo-direction.
1 Fl cu =0
FQ : 8’(1,/871 =0
1/2
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4. Let £ > 0 be a constant, a(z) > 0 and a,(x) > 0. Consider the boundary value problem
U+ a(x)uy —eugy = f, =€ (0,1); u(0) = uy(1) =0.
Let || - || denotes the Lo(I)-norm, I = (0,1). Prove the following stability estimate:
IVeus|| + [[Veazua|| + [leuas|| < ClIfIl,

5. Consider the Dirichlet boundary value problem:
(BVP) — (a(z)u/(x))" = f(x), for 0<z <1, uw(0) =0, wu(l)=0.
where a(xz) > 0 (the modulus of elasticity). Formulate the corresponding variational formulation
(VF), the minimization problem (MP) and prove that (VF) <= (MP).
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Solutions.

1. We multiply the differential equation by a test function v € H} = {v : ||[v|| +|[v'|| < 0o, v(0) =
v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u € H}(I) such that

(1) /(u’v’ +u'v) = /fv7 Yo € HY(I).
I I

Or equivalently, find v € H}(I) such that

(2) (s, v2) + (uz,v) = (f,v), Vv € Hy(I),

with (-,-) denoting the Ly([I) scalar product: (u,v) = [, u(x)v(z)dz. A Finite Element Method
with ¢G(1) reads as follows: Find uj, € V;? such that

(3) /(uﬁlv' + upv) = /fv, Yo € V) C HY(I),
I I
where
V¥ = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.
Or equivalently, find uj, € V¥ such that
Let now
a(u,v) = (Ug, vg) + (Ug, V).
We want to show that a(-,-) is both elliptic and continuous:
ellipticity
() a(u, ) = (uz, uz) + (s, u) = [Jug||?,

where we have used the boundary data, viz,

1 2 1
U
/ Ugudr = [—} =0.
0 2 1o
continuity

(6) a(u,v) = (g, vz) + (uz, v) < ug|[[[va]] + [Jue|[[[0]] < 2[ue||[[v2]],
where we used the Poincare inequality ||v|| < [|vg]]-
Let now e = u — uy, then (2)- (4) gives that

(1) alu—un,v) = (Ug — Up o, V2) + (Up — Un o, v) =0, Yo € VP, (Galerkin Orthogonality).

A posteriori error estimate: We use again ellipticity (5), Galerkin orthogonality (7), and the vari-
ational formulation (1) to get

lez||* = ale,e) = a(e,e — me) = a(u, e — we) — a(up, e — we)
(8) = (f,e —me) —a(up, e —me) = (f,e —me) — (Un g, €0 — (M€)z) — (Up,z, € — TE)
= (f — tunaz,e —me) < C|[h(f — ung)llllexl],

where in the last equality we use the fact that e(x;) = (me)(z;), for j:s being the node points, also
Up,ze = 0 on each I; := (z;_1,2;). Thus

(Unhz, €0 — (TE)y) = — Z /1 Up, e (€ — me) + Z (uh,x(e — 7re)>

1

=0.
I;




Hence, (8) yields:

(9) llexll < ClIR(f = una)ll-

2. Solution: Recall the continuous and approximate weak formulations:
(10) (aVu,Vv) = (f,v), Vv € H} (),

and

(11) (aVU,Vv) = (f,v), Yv e M,
respectively, so that

(12) (aV(u—U),Vv) =0, Yv € M.

We may write
u—U=u—x+x—-U,
where x is an arbitrary element of M, it follows that
(aV(u—-U),V(u—-0U)) =(aV(u—-U),V(u—x))
(13) < 1V (u = O - [Ju = X[m0
< allu = Ullgyoylle = X #1)

on using (3), Schwarz’s inequality and the boundedness of a. Also, from the boundedness condition
on a, we have that

(14) (aV(u—=U),V(u—=U)) > collu = Ullip o).
Combining (4) and (5) gives
C1
lu = Ul|g ) < %Hu = Xl -
Since x is an arbitrary element of M, we obtain the result.
3. Solution: Let I'y := 92\ T's where I'y := {(1,22) : 0 < x5 < 1}. Define
V={v:ve H(Q), v=0 on T}

Multiply the equation by v € V' and integrate over €2; using Green’s formula

/Vu-Vv—/@vz Vu-Vv:/v,
Q r on Q Q

where we have used I' = I';y UT'3 and the fact that v =0 on I';y and % =0on I's.

Variational formulation:
/Vu-Vv:/v, Yv e V.
Q Q

Find v € V such that

FEM: ¢G(1):
Find U € V}, such that

(15) /VU~VU:/U, YoeV, CV,
Q Q

where
Vi, = {v : v is piecewise linear and continuous in ©, v =0 on I';, on above mesh }.
A set of bases functions for the finite dimensional space V}, can be written as {¢;}?_;, where
{ @i € Vi, i=1,2,3,4
©i(N;) =0d;5, 4,5=1,2,3,4.
Then the equation (2) is equivalent to: Find U € V}, such that
(16) VU -Vp; = /ngi, i=1,2,3,4.

Q
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Set U = Z?:1 &;p;. Invoking in the relation (3) above we get

4
Zéj/wywiz/% i=1,2,34.
= Q Q

Now let a;; = [, Vi, - Vi and b; = [, @i, then we have that
A& =D, A is the stiffness matrix b is the load vector.

Below we compute a;; and b;

) /@ 6- 1. A2 =8, i=1,2,3
i — i — 1/41/2 .
e R S VAT A
and (5 1)
2. (3+1+1)=5 i=1,23
ai; = | ViV, = 4 y ’ o
/Q vivy {2+1+}1:5/2, i=4
Further
iit1 = / Vir1 - Vo, =2-(-1)=—-2=a;414, =123,
Q
and

CLij:O, |i—j|>1.
Thus we have

5 -2 0 0 2
-2 5 -2 0 1] 2

4= 0 -2 5 -2 b_Tﬁ 2
1

0 0 —2 5/2
4. Multiply the equation by —eu,, and integrate over I = (0, 1):

1 1 1 1
(17) /0 —suum+/0 —aa(a:)uxum—i-/o 62u§x :—/O Ef gy

We calculate the first two integral on the left hand side of (17)as:

1 1 1 1
(18) / —EUUgy = —{Euum} —|—/ cu? :/ euy.
0 0 Jo 0

2
Uy

1 1 2 1
1 0 1
(19) / —ea(X)Uylyy = [— Ea(m)—} + 7/ cau2 = ea(0) u2(0) + f/ caul.
o 21732, 2 2,

Inserting (18) and (19) in (18) yields

1 2 1 1
uz (0 1
/ eu? + ea(0) o )+*/ 5azui+/ e2u?,
0 2 2 Jo 0

[~}

(20) L )

== | e < Ufeeal < 1AIP + Fllous
Thus
(21) IVZu P + 5l VETze P + lleuss | < 1112
Hence
(22) IVeual + Iearus | + leul < CI/I

5. See the lecture notes.
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