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TMA372/MMG800: Partial Differential Equations, 2015–06–09, 8:30-12:30

Telephone: Anders Martinsson: 0703-088304
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-21p, 4: 22-28p och 5: 29p- For GU studentsG:15-25p, VG: 26p-
For solutions the couse diary in: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1415/

1. Consider the Dirichlet problem (with c0 ≤ a(x) ≤ c1, ∀x ∈ Ω, where c0 and c1 are constants)

−∇ · (a(x)∇u) = f(x), x ∈ Ω ⊂ R
2, u = 0, for x ∈ ∂Ω.

Let U =
∑N

j=1 αjwj(x) be a Galerkin approximation of u in a finite dimensional subspace M of

H1
0 (Ω). Prove the a priori error estimate below and specify C as best you can

||u− U ||H1

0
(Ω) ≤ C inf

χ∈M
||u− χ||H1

0
(Ω).

2. Consider the following Neumann boundary value problem (n is the outward unit normal to Γ)

−∆u+ u = f, x ∈ Ω ⊂ R
d, n · ∇u = g, on Γ := ∂Ω.

(a) Show the stability estimate: ||∇u||2L2(Ω) + ||u||2L2(Ω) ≤ C
(

||f ||2L2(Ω) + ||g||2L2(Γ)

)

.

(b) Formulate a finite element method for the 1D-case and derive the resulting system of equations
for Ω = [0, 1], f(x) = 1, g(0) = 3 and g(1) = 0.

3. Formulate the cG(1) Galerkin finite element method for the Dirichlet boundary value problem

−∆u+ u = f, x ∈ Ω; u = 0, x ∈ ∂Ω.

Write the matrices for the resulting equation system using the reference triangle-element T and
the partition below (see fig.) with the nodes at Ni, i = 1, . . . , 5 and a uniform mesh size h.
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4. Consider the boundary value problem

−εu′′ + α(x)u′ + u = f(x), 0 < x < 1, u(0) = 0, u′(1) = 0,

where ε is a positive constant and α is a function satisfying α(x) ≥ 0, α′(x) ≤ 0. Show that

√
ε||u′|| ≤ C1||f ||, ||αu′|| ≤ C2||f ||, ε||u′′|| ≤ C3||f ||, where ||v|| =

(

∫ 1

0

v2 dx
)1/2

5. Consider the boundary value problem for the stationary heat flow (Poisson equation) in 1D:

(BV P ) − (a(x)u′(x))′ = f(x), 0 < x < 1, u(0) = u(1) = 0.

Formulate the corresponding variational formulation (VF), and show that: (BV P ) ⇐⇒ (V F ).
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Solutions.

1. Recall the continuous and approximate weak formulations:

(1) (a∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω),

and

(2) (a∇U,∇v) = (f, v), ∀v ∈M,

respectively, so that

(3) (a∇(u− U),∇v) = 0, ∀v ∈M.

We may write

u− U = u− χ+ χ− U,

where χ is an arbitrary element of M , it follows that

(a∇(u− U),∇(u− U)) =(a∇(u− U),∇(u− χ))

≤ ||a∇(u− U)|| · ||u− χ||H1

0
(Ω)

≤ c1||u− U ||H1

0
(Ω)||u− χ||H1

0
(Ω),

(4)

on using (3), Schwarz’s inequality and the boundedness of a. Also, from the boundedness condition
on a, we have that

(5) (a∇(u− U),∇(u− U)) ≥ c0||u− U ||2H1

0
(Ω).

Combining (4) and (5) gives

||u− U ||H1

0
(Ω) ≤

c1
c0

||u− χ||H1

0
(Ω).

Since χ is an arbitrary element of M , we obtain the result.

2. a) Multiplying the equation by u and performing partial integration we get
∫

Ω

∇u · ∇u+ uu−
∫

Γ

n · ∇uu =

∫

Ω

fu,

i.e.,

(6) ||∇u||2 + ||u||2 =

∫

Ω

fu+

∫

Γ

gu ≤ ||f ||||u||+ ||g||ΓCΩ(||∇u||+ ||u||)

where || · || = || · ||L2(Ω) and we have used the inequality ||u|| ≤ CΩ(||∇u|| + ||u||). Further using

the inequality ab ≤ a2 + b2/4 we have

||∇u||2 + ||u||2 ≤ ||f ||2 + 1

4
||u||2 + C||g||2Γ +

1

4
||∇u||2 + 1

4
||u||2

which gives the desired inequality.

b) Consider the variational formulation

(7)

∫

Ω

∇u · ∇v + uv =

∫

Ω

fv +

∫

Γ

gv,

set U(x) =
∑

Ujψj(x) and v = ψi in (7) to obtain

N
∑

j=1

Uj

∫

Ω

∇ψj · ∇ψi + ψjψi =

∫

Ω

fψi +

∫

Γ

gψi, i = 1, . . . , N.
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This gives AU = b where U = (U1, . . . , UN )T , b = (bi) with the elements

bi = h, i = 2, . . . , N − 1, b(N) = h/2, b(1) = h/2 + 3,

and A = (aij) with the elements

aij =







−1/h+ h/6, for i = j + 1 and i = j − 1
2/h+ 2h/3, for i = j and i = 2, . . . , N − 1
0, else.

3. Let V be the linear function space defined by

V := {v : v is continuous in Ω, v = 0, on ∂Ω}.
Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) + (u, v) = (f, v), ∀v ∈ V.

Now using Green’s formula we have that

−(∆u,∇v) = (∇u,∇v)−
∫

∂Ω

(n · ∇u)v ds = (∇u,∇v), ∀v ∈ V.

Thus, since v = 0 on ∂Ω, the variational formulation is:

(∇u,∇v) + (u, v) = (f, v), ∀v ∈ V.

Let now Vh be the usual finite element space consisting of continuous piecewise linear functions,
on the given partition (triangulation), satisfying the boundary condition v = 0 on ∂Ω:

Vh := {v : v is continuous piecewise linear in Ω, v = 0, on ∂Ω}.
The cG(1) method is: Find U ∈ Vh such that

(∇U,∇v) + (U, v) = (f, v) ∀v ∈ Vh

Making the “Ansatz” U(x) =
∑5

j=1 ξiϕj(x), where ϕj are the standard basis functions, we obtain
the system of equations

5
∑

j=1

ξj

(

∫

Ω

∇ϕi · ∇ϕj dx+

∫

Ω

ϕiϕj dx
)

=

∫

Ω

fϕi dx, i = 1, 2, 3, 4, 5

or, in matrix form,

(S +M)ξ = F,

where Sij = (∇ϕi,∇ϕj) is the stiffness matrix,Mij = (ϕi, ϕj) is the mass matrix, and Fj = (f, ϕj)
is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T . The local basis
functions are

φ1(x1, x2) = 1− x1
h

− x2
h
, ∇φ1(x1, x2) = − 1

h

[

1
1

]

,

φ2(x1, x2) =
x1
h
, ∇φ2(x1, x2) =

1

h

[

1
0

]

,

φ3(x1, x2) =
x2
h
, ∇φ3(x1, x2) =

1

h

[

0
1

]

.

Hence, with |T | =
∫

T
dz = h2/2,

m11 = (φ1, φ1) =

∫

T

φ21 dx = h2
∫ 1

0

∫ 1−x2

0

(1− x1 − x2)
2 dx1dx2 =

h2

12
,

s11 = (∇φ1,∇φ1) =
∫

T

|∇φ1|2 dx =
2

h2
|T | = 1.
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Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

m11 = (φ1, φ1) =

∫

T

φ21 dx =
|T |
3

3
∑

j=1

φ1(x̂j)
2 =

h2

6

(

0 +
1

4
+

1

4

)

=
h2

12
,

where x̂j are the midpoints of the edges. Similarly we can compute the other elements and obtain

m =
h2

24





2 1 1
1 2 1
1 1 2



 , s =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

We can now assemble the global matrices M and S from the local ones m and s:

M11 =M33 =M55 = 8m22 = 8× h2

12
, S11 = S33 = S55 = 8s22 = 8× 1

2
8 = 4,

M22 =M44 = 4m11 = 4× h2

12
=
h2

3
, S22 = S44 = 4s11 = 4× 1 = 4,

M12 =M23 =M34 =M45 = 2m12 =
1

12
h2, S12 = S23 = S34 = S45 = 2s12 = −1,

M13 =M14 =M15 =M24 =M25 =M35 = 0, S13 = S14 = S15 = S24 = S25 = S35 = 0,

The remaining matrix elements are obtained by symmetry Mij =Mji, Sij = Sji. Hence,

M =
h2

12













8 1 0 0 0
1 4 1 0 0
1 1 8 1 0
0 0 1 4 1
0 0 0 1 8













, S =













4 −1 0 0 0
−1 4 −1 0 0
0 −1 4 −1 0
0 0 −1 4 −1
0 0 0 −1 4













.

4. Multiplication by u gives

ε||u′||2 +
∫ 1

0

αu′u dx+ ||u||2 = (f, u) ≤ ||f ||||u|| ≤ 1

2
||f ||2 + 1

2
||u||2.

Here

(8)

∫ 1

0

αu′u dx =
1

2

∫ 1

0

α
d

dx
u2 dx =

1

2
α(1)u(1)2 − 1

2

∫ 1

0

α′u2 dx ≥ 0,

and hence

ε||u′||2 + 1

2
||u||2 ≤ 1

2
||f ||2, which implies

√
ε||u′|| ≤ ||f ||, ||u|| ≤ ||f ||.

Multiply the equation by αu′ and integrate over x to obtain

−ε
∫ 1

0

u′′αu′ dx+ ||αu′||2 +
∫ 1

0

αu′u dx ≤ 1

2
||f ||2 + 1

2
||αu′||2.

Hence from the above estimates we get that

||αu′||2 ≤ ||f ||2 + ε

∫ 1

0

α
d

dx
(u′)2 dx = ||f ||2 − εα(0)u′(0)2 − ε

∫ 1

0

α′(u′)2 dx

≤ ||f ||2 + ||α′||ε||u′||2 ≤ ||f ||2 + Cε||u′||2.
This also yields

(9) ||αu′|| ≤ C||f ||.
Finally, by the differential equation and the estimates above we get

ε||u′′|| = ||f − αu′ − u|| ≤ ||f ||+ ||αu′||+ ||u|| ≤ C||f ||.

5. See the Lecture Notes.
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