Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2015-03—-18, 14:00-18:00

Telephone: Mohammad Asadzadeh: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-21p, 4: 22-28p och 5: 29p-  For GU studentsG:15-25p, VG: 26p-
For solutions and information about gradings see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1415 /index.html

1. Let mip be the Lo-projection of ¢ into piecewise constants, i.e. fl_ Treds = fI, pds.
J J
Show that for a subinterval I; = (¢;_1,t;), with ¢; = jk and k being a positive constant
d
/ o — el ds < k/ plds,  with ¢="",
I I dt

2. Consider the following general form of the heat equation for 2 C R? with boundary 9Q =T,

ur(z,t) — Au(z, t) = f(x,t), forx e Q, 0<t<T,
(1) u(z,t) =0, forxel, 0<t<T,
u(z,0) = up(x), for z € Q,

Let @ be the solution of (1) with a modified initial data @ (z) = uo(z) + e(x).
a) Show that w := @ — u solves (1) with data wo(z) = e(z) ( and f = 0). Derive stability

estimates for w, i.e. estimate ||w(T)||* + 2f0T [Vw||?dt by ||wo||*.
b) Use stability estimate for w to prove that the solution of (1) is unique.

3. Formulate the ¢G(1) piecewise continuous Galerkin method in € (see fig. below) for the problem
—Au(z) =1, for z €Q, u(z) =0, for ze€ly, and Vu(z) n(z)=1 for x € 00\ T,

where n(z) is the outward unit normal to 0Q at € 9. Determine the coefficient matrix and load
vector for the resulting equation system using the mesh as in the fig. with nodes at Ny, No, N3
and N4 and a uniform mesh size h. Hint: First compute the matrix for the standard element T'.
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4. a) Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the
H'-norm: ||e||3,, = [|€/[|7, + |lel|7,) for a finite element method for problem

—u" + pru’ + (1 + g)u =f, 1in (0,1), u(0) = u(l) =0.
b) For which value of p the a priori error estimate is optimal?

5. Consider the heat equation (1) in problem 2 above, with f = 0. Prove the following stability
estimates

2 Vu U and 7 S u s)as ug||-
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Solutions.

1. We may assume that ¢ — m = 0 only in one point , t = {.
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Fort <t < t;, we have

() — mp = / $(s) ds

This implies that
t t tj
o(t) — Te] = | / @(s) ds| < / 19(s)] ds < / 19(s)| ds.
t t tj—1

Integrating over (%,t;) we get

(2) / lo(t) — mripl ds < / / $(s)] dtds < (t; — T) / | dt.
t t ti_1 tj—1
Similarly for t;_; <t < t
t tj
(3) / lo(t) — mypl ds < (F— t;1) / | dt.
t—j—1 tj—1

Combining (2) and (3) yields the desired result.
2. We have that

Uy — Au = f| inQ, 0<t<T,
(4) u(z,t) =0, onl', 0<t<T,
u(z,0) = up(x), in £,
and
ur — Au = f, inQ, 0<t<T,
(5) u(z,t) =0, onl, 0<t<T,

ﬂ($70) :u0($)+€(z)7 in Qa
Now we study w = u — u. (Propagation of disturbance).
a) Through subtracting (4) from (5) we get the differential equation for w:

wy — Aw = f, inQ, 0<t<T,
(6) w(zx,t) =0, onl, 0<t<T,
w(z,0) = e(x), in €,

By the stability estimates for the heat equation we have that

T
(7) lw(T)] + 2/ [Vwl|*dt < || (No growth of disturbance).
0
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b) To prove uniqueness for (4), take e = 0 in (6) and prove that w = 0. This is obvious from (7):
T
@) +2 [ [Vulde <o
0

where both ||w(T)|| > 0 and ||[Vw]||?> > 0. Thus w = 0, so the uniqueness is proved.

3. Let V be the linear function space defined by
Vi={v: / <v2 + |V'U\2) dr < oo, v=0, onTIy}.
Q

Multiplying the differential equation by v € V and integrating over {2 we get that
—(Au,v) = (1,v), Yv e V.

Now using Green’s formula and the boundary conditions we have that

—(Au, Vv) = (Vu, V) —/

(n-Vu)vds = (Vu, Vv) — / vds, Yo e V.
I9)

AO\T,

Thus the variational formulation is:

/Vu~Vvdx:/vdx+/ vds, Yo e V.
Q Q 2O\

Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on I'y:

Vi :={v: v is continuous piecewise linear in 2, v =0, on I'1}.

The ¢G(1) method is: Find U € V}, such that

/VU~Vvd9::/vdx+/ vds, Yo eV,
Q Q O\,

Making the “Ansatz” U(z) = 2?21 &;pj(x), where @; are the standard basis functions, we obtain
the system of equations

4
=1 Q Q OO\

or, in matrix form,
S¢=Db, Sij = (Vi, Vo

where S is the stiffness matrix, and b = by + by is the load vector with components

bl,i = / ©i d.’E, and bg’i = / (%) ds.
Q OO\TI';

We first compute stiffness matrix for the reference triangle T'. The local basis functions are

¢1($1,$2)=1—%—%, V¢1($1,$2)=—% [ } }7
p2(x1,22) = %7 Voo(z1,22) = % { (1) } ;
¢3(x1,22) = %27 Vos(z1,x2) = % [ ? } .



Hence, with |T| = [, dz = h?/2,

2
s11 = (V¢1, V1) =/ |V |? doe = ﬁm =1,
T

1
S19 = (V¢1,V¢2) = / |V¢)1|2d.73 = _ﬁ|T‘ = —1/2, S13 = —1/2
T
1
522 = (Voo, Vo) = / [V go|* do = ﬁlTl =1/2, 523 = (Voo,Ve3) = 0,
T

1
s33 = (Voz, Vo) =/ |Vs|? dr = ﬁlﬂ =1/2,
T

Thus using the symmetry we have the local stiffness matrix as

2 -1 -1
5= % -1 10
-1 0 1
We can now assemble the global matrix S from the local s, using the character of our mesh, viz:
S11 =48990 =2, Sip =285 =—1 S13 = 2893 =0 S14 =812 =—-1/2
Sag = 2511 = 2, Soz = s12 = —1/2 S24 =10
S33 = 2590 = 1, Sg4 =512 = —1/2

Spu=s11=1
The remaining matrix elements are obtained by symmetry S;; = S;;. Hence,
4 -2 0 -1
11 -2 4 -1 0
=31 0 1 2 -1
-1 0 -1 2

As for the load vector we note that

1 A2 h?
b1 = = - —1=4—
1,1 /QSOl 3 79 6’
1 h? h?
(8) bio=bio=2 - —.1=2—
1,2 1,2 3 % 6
1 h? h?
b 1.2..1=—
A 32 6’
1 .
(9) bai= [ wi=2 5=k =123
o0 2
Hence the load vector b is:
4 1
h? | 2 1
b_E 5 +h 1
1 1

4. We multiply the differential equation by a test function v € H}(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational
problem: Find u € H}(I) such that

(10) / (u’v' +pru'v+ (1 + g)uv> = /fv, Yo € Hy(I).
I I
A Finite Element Method with ¢G(1) reads as follows: Find U € V}? such that

(11) / (U’v’ +paU'v + (1 + g)Uv> = /fv, Vo e VO ¢ HY(I),
I I

3



where
V¥ = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.
Now let e = u — U, then (10)-(11) gives that

(12) / (elvl + pze'v+ (1 + g)ev) =0, WweV
I

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

p d P p P
(13) /Ipxe'e = 5/]1’%(62) 5(1’62) 5 - 5/}62 = 75/162,

so that

lellF: = /I(e’e’ + ee) = /1 (e’e’ +pre'e + (1+ g)ee)

= /1 ((u -U)e +pr(u—U)e+ (1+ g)(u - U)e) ={v=—ein(1)}
(14) = /Ife - /I (U’e’ +pxU'e+ (1 + g)Ue> = {v = me in(2)}
= /If(e — The) — /I (U'(e —mpe) + pxU'(e — mpe) + (1 + g)U(e - 7Th6)>

= {P.I. on each subinterval} = /R(U)(e — mhe),
1

where R(U) := f+U" —paU’'—(1+5)U = f—paU’— (1+5)U, (for approximation with piecewise

linears, U = 0, on each subinterval). Thus (14) implies that
lellzn < IPR@)IR™ (e — mne)|
< GIRR@)|€']l < CillhR@) [ ell a2
where Cj is an interpolation constant, and hence we have with || - || = || - ||z, () that
el < Cil AR(U)-

A priori error estimate: We use (13) and write

lell3: = /(e/e/ +ee) = /I(e’e’ +pre'e + (1 + g)ee)
I

_ /1 (¢/u =) +pre'(u—0) + (1 + De(u = U)) = {v = U~ myu in(3)}

= /1 (e’(u — mpu) + pre (u — mhu) + (1 + ‘g)e(u — Whu))

P
< M = mnu) el + plle = myullle'll + (L + Sl = maullllel
< {lltw = mnu)'l| + (1 + p)llu — mnull Hiel

< Cofllhu"|| + (@ + p) IR [ Hlel

this gives that
el < Cifllhu”|| + (1 + p)||R*a" |},
which is the a priori error estimate.

b) As seen p = 0 (corresponding to zero convection) yields optimal a priori error estimate.

5. See the Lecture Notes.
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