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1. Let πkϕ be the L2-projection of ϕ into piecewise constants, i.e.
∫

Ij
πkϕds =

∫
Ij

ϕds.

Show that for a subinterval Ij = (tj−1, tj), with tj = jk and k being a positive constant
∫

Ij

|ϕ − πkϕ| ds ≤ k

∫

Ij

|ϕ̇| ds, with ϕ̇ =
dϕ

dt
.

2. Consider the following general form of the heat equation for Ω ⊂ R
2 with boundary ∂Ω = Γ,

(1)





ut(x, t) − ∆u(x, t) = f(x, t), for x ∈ Ω, 0 < t ≤ T,
u(x, t) = 0, for x ∈ Γ, 0 < t ≤ T,
u(x, 0) = u0(x), for x ∈ Ω,

Let ũ be the solution of (1) with a modified initial data ũ0(x) = u0(x) + ε(x).

a) Show that w := ũ − u solves (1) with data w0(x) = ε(x) ( and f = 0). Derive stability

estimates for w, i.e. estimate ‖w(T )‖2 + 2
∫ T

0
‖∇w‖2dt by ‖w0‖2.

b) Use stability estimate for w to prove that the solution of (1) is unique.

3. Formulate the cG(1) piecewise continuous Galerkin method in Ω (see fig. below) for the problem

−∆u(x) = 1, for x ∈ Ω, u(x) = 0, for x ∈ Γ1, and ∇u(x) · n(x) = 1 for x ∈ ∂Ω \ Γ1,

where n(x) is the outward unit normal to ∂Ω at x ∈ ∂Ω. Determine the coefficient matrix and load
vector for the resulting equation system using the mesh as in the fig. with nodes at N1, N2, N3

and N4 and a uniform mesh size h. Hint: First compute the matrix for the standard element T .
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4. a) Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the
H1-norm: ||e||2H1 = ||e′||2L2

+ ||e||2L2
) for a finite element method for problem

−u′′ + pxu′ + (1 +
p

2
)u = f, in (0, 1), u(0) = u(1) = 0.

b) For which value of p the a priori error estimate is optimal?

5. Consider the heat equation (1) in problem 2 above, with f ≡ 0. Prove the following stability
estimates

i) ‖∇u‖(t) ≤ 1√
2t
‖u0‖ and ii)

( ∫ t

0

s‖∆u‖2(s) ds
)1/2

≤ 1

2
‖u0‖.
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Solutions.

1. We may assume that ϕ − πkϕ = 0 only in one point , t = t̃.

tjt̃tj−1

πkϕ

ϕ

For t̃ ≤ t ≤ tj , we have

ϕ(t) − πkϕ =

∫ t

t̃

ϕ̇(s) ds

This implies that

|ϕ(t) − πkϕ| = |
∫ t

t̃

ϕ̇(s) ds| ≤
∫ t

t̃

|ϕ̇(s)| ds ≤
∫ tj

tj−1

|ϕ̇(s)| ds.

Integrating over (t̃, tj) we get

(2)

∫ tj

t̃

|ϕ(t) − πkϕ| ds ≤
∫ tj

t̃

∫ tj

tj−1

|ϕ̇(s)| dt ds ≤ (tj − t̃)

∫ tj

tj−1

|ϕ̇| dt.

Similarly for tj−1 ≤ t ≤ t̃

(3)

∫ t̃

t−j−1

|ϕ(t) − πkϕ| ds ≤ (t̃ − tj−1)

∫ tj

tj−1

|ϕ̇| dt.

Combining (2) and (3) yields the desired result.

2. We have that

(4)





ut − ∆u = f, in Ω, 0 < t ≤ T,
u(x, t) = 0, on Γ, 0 < t ≤ T,
u(x, 0) = u0(x), in Ω,

and

(5)





ũt − ∆ũ = f, in Ω, 0 < t ≤ T,
ũ(x, t) = 0, on Γ, 0 < t ≤ T,
ũ(x, 0) = u0(x) + ε(x), in Ω,

Now we study w = ũ − u. (Propagation of disturbance).

a) Through subtracting (4) from (5) we get the differential equation for w:

(6)





wt − ∆w = f, in Ω, 0 < t ≤ T,
w(x, t) = 0, on Γ, 0 < t ≤ T,
w(x, 0) = ε(x), in Ω,

By the stability estimates for the heat equation we have that

(7) ‖w(T )‖ + 2

∫ T

0

‖∇w‖2 dt ≤ ‖ε‖2. (No growth of disturbance).
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b) To prove uniqueness for (4), take ε = 0 in (6) and prove that w ≡ 0. This is obvious from (7):

‖w(T )‖ + 2

∫ T

0

‖∇w‖2 dt ≤ 0,

where both ‖w(T )‖ ≥ 0 and ‖∇w‖2 ≥ 0. Thus w ≡ 0, so the uniqueness is proved.

3. Let V be the linear function space defined by

V := {v :

∫

Ω

(
v2 + |∇v|2

)
dx < ∞, v = 0, on Γ1}.

Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) = (1, v), ∀v ∈ V.

Now using Green’s formula and the boundary conditions we have that

−(∆u,∇v) = (∇u,∇v) −
∫

∂Ω

(n · ∇u)v ds = (∇u,∇v) −
∫

∂Ω\Γ1

v ds, ∀v ∈ V.

Thus the variational formulation is:
∫

Ω

∇u · ∇v dx =

∫

Ω

v dx +

∫

∂Ω\Γ1

v ds, ∀v ∈ V.

Let Vh be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on Γ1:

Vh := {v : v is continuous piecewise linear in Ω, v = 0, on Γ1}.

The cG(1) method is: Find U ∈ Vh such that
∫

Ω

∇U · ∇v dx =

∫

Ω

v dx +

∫

∂Ω\Γ1

v ds, ∀v ∈ Vh

Making the “Ansatz” U(x) =
∑4

j=1 ξjϕj(x), where ϕi are the standard basis functions, we obtain
the system of equations

4∑

j=1

ξj

( ∫

Ω

∇ϕi · ∇ϕj dx
)

=

∫

Ω

ϕi dx +

∫

∂Ω\Γ1

ϕi ds, i = 1, 2, 3, 4

or, in matrix form,

Sξ = b, Sij = (∇ϕi,∇ϕj

where S is the stiffness matrix, and b = b1 + b2 is the load vector with components

b1,i =

∫

Ω

ϕi dx, and b2,i =

∫

∂Ω\Γ1

ϕi ds.

We first compute stiffness matrix for the reference triangle T . The local basis functions are

φ1(x1, x2) = 1 − x1

h
− x2

h
, ∇φ1(x1, x2) = − 1

h

[
1
1

]
,

φ2(x1, x2) =
x1

h
, ∇φ2(x1, x2) =

1

h

[
1
0

]
,

φ3(x1, x2) =
x2

h
, ∇φ3(x1, x2) =

1

h

[
0
1

]
.
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Hence, with |T | =
∫

T
dz = h2/2,

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|2 dx =
2

h2
|T | = 1,

s12 = (∇φ1,∇φ2) =

∫

T

|∇φ1|2 dx = − 1

h2
|T | = −1/2, s13 = −1/2

s22 = (∇φ2,∇φ2) =

∫

T

|∇φ2|2 dx =
1

h2
|T | = 1/2, s23 = (∇φ2,∇φ3) = 0,

s33 = (∇φ3,∇φ3) =

∫

T

|∇φ3|2 dx =
1

h2
|T | = 1/2,

Thus using the symmetry we have the local stiffness matrix as

s =
1

2




2 −1 −1
−1 1 0
−1 0 1


 .

We can now assemble the global matrix S from the local s, using the character of our mesh, viz:

S11 = 4s22 = 2, S12 = 2s12 = −1 S13 = 2s23 = 0 S14 = s12 = −1/2

S22 = 2s11 = 2, S23 = s12 = −1/2 S24 = 0

S33 = 2s22 = 1, S34 = s12 = −1/2

S44 = s11 = 1

The remaining matrix elements are obtained by symmetry Sij = Sji. Hence,

S =
1

2




4 −2 0 −1
−2 4 −1 0

0 −1 2 −1
−1 0 −1 2


 .

As for the load vector we note that

b1,1 =

∫

Ω

ϕ1 = 4 · 1

3
· h2

2
· 1 = 4

h2

6
,

b1,2 = b1,2 = 2 · 1

3
· h2

2
· 1 = 2

h2

6
,

b1,4 = 1 · 1

3
· h2

2
· 1 =

h2

6
,

(8)

(9) b2,i =

∫

∂Ω

ϕi = 2 · 1

2
(h · 1) = h, i = 1, 2, 3, 4.

Hence the load vector b is:

b =
h2

6




4
2
2
1


 + h




1
1
1
1




4. We multiply the differential equation by a test function v ∈ H1
0 (I), I = (0, 1) and integrate

over I. Using partial integration and the boundary conditions we get the following variational

problem: Find u ∈ H1
0 (I) such that

(10)

∫

I

(
u′v′ + pxu′v + (1 +

p

2
)uv

)
=

∫

I

fv, ∀v ∈ H1
0 (I).

A Finite Element Method with cG(1) reads as follows: Find U ∈ V 0
h such that

(11)

∫

I

(
U ′v′ + pxU ′v + (1 +

p

2
)Uv

)
=

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),
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where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u − U , then (10)-(11) gives that

(12)

∫

I

(
e′v′ + pxe′v + (1 +

p

2
)ev

)
= 0, ∀v ∈ V 0

h .

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(13)

∫

I

pxe′e =
p

2

∫

I

x
d

dx
(e2) =

p

2
(xe2)|10 −

p

2

∫

I

e2 = −p

2

∫

I

e2,

so that

‖e‖2
H1 =

∫

I

(e′e′ + ee) =

∫

I

(
e′e′ + pxe′e + (1 +

p

2
)ee

)

=

∫

I

(
(u − U)′e′ + px(u − U)′e + (1 +

p

2
)(u − U)e

)
= {v = e in(1)}

=

∫

I

fe −
∫

I

(
U ′e′ + pxU ′e + (1 +

p

2
)Ue

)
= {v = πhe in(2)}

=

∫

I

f(e − πhe) −
∫

I

(
U ′(e − πhe)′ + pxU ′(e − πhe) + (1 +

p

2
)U(e − πhe)

)

= {P.I. on each subinterval} =

∫

I

R(U)(e − πhe),

(14)

where R(U) := f +U ′′−pxU ′−(1+ p
2 )U = f−pxU ′−(1+ p

2 )U , (for approximation with piecewise
linears, U ≡ 0, on each subinterval). Thus (14) implies that

‖e‖2
H1 ≤ ‖hR(U)‖‖h−1(e − πhe)‖

≤ Ci‖hR(U)‖‖e′‖ ≤ Ci‖hR(U)‖‖e‖H1 ,

where Ci is an interpolation constant, and hence we have with ‖ · ‖ = ‖ · ‖L2(I) that

‖e‖H1 ≤ Ci‖hR(U)‖.

A priori error estimate: We use (13) and write

‖e‖2
H1 =

∫

I

(e′e′ + ee) =

∫

I

(e′e′ + pxe′e + (1 +
p

2
)ee)

=

∫

I

(
e′(u − U)′ + pxe′(u − U) + (1 +

p

2
)e(u − U)

)
= {v = U − πhu in(3)}

=

∫

I

(
e′(u − πhu)′ + pxe′(u − πhu) + (1 +

p

2
)e(u − πhu)

)

≤ ‖(u − πhu)′‖‖e′‖ + p‖u − πhu‖‖e′‖ + (1 +
p

2
)‖u − πhu‖‖e‖

≤ {‖(u − πhu)′‖ + (1 + p)‖u − πhu‖}‖e‖H1

≤ Ci{‖hu′′‖ + (1 + p)‖h2u′′‖}‖e‖H1 ,

this gives that
‖e‖H1 ≤ Ci{‖hu′′‖ + (1 + p)‖h2u′′‖},

which is the a priori error estimate.

b) As seen p = 0 (corresponding to zero convection) yields optimal a priori error estimate.

5. See the Lecture Notes.
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