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TMAS72/MMG800: Partial Differential Equations, 2014-08-27, 8:30-12:30 .

Telephone: Flin Solberg: 0703-088304

Caleulators, formula notes and other subject related material are not allowed.

Each problem gives max 6p. Valid bonus poits will be added to the scores,
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p- For GU studenisG:15-24p, VG 25p-
For solutions and information about gradings see the couse diary in:

http:/ /www.math.chalmers.se/Math/Grurdutb/CTH /tma3872/1314/index.htral.

1, Show the following estimate for the linear interpolation my f of a function f € C?(0,1),

limef — fllemion < & max £/,

— 8o0<e<1

2. Prove an a priori and an a posteriori error estimate for the cG(1) finite element method for
—u"(z) + zu'(z) + u(z) = f(z), O<z<l,
1(0) = u(1) =0,
in the energy norm |[ufig with |j|[} = [WliZ, ¢ + W1,
3. Formulate the cG{1) piecewise continuous Galerkin method for the boundary value problem
—Au+u=f z €,
u =1, z & o)
on the domain 2 (see fig.) Write the mafrices for the resulting equation systern usmg the followmg
mesh with nodes at Ny, No and Na and a uniform mesh size A.
Hint: You may first compute the matrices for a standard triangle- -element 1"

Ny Ny Ny

L 2
4. Prove that if u = 0 on the boundary of the.unit square £ = [0, 1] x [0, 1], then

; 1/2
full <[Vul, (A Poincare inequality in 2D), fiwl = { f wl? dz) *
i Q

5. Consider the boundary value problem
(BV P) —(a{z)u/(z)) = flz), O0<z<l, uw{0) = u{l) =0, a(z) > 0.
a) Formulate the variational formulation and minimization problem for BVP.
b) Show that the BVP and variational formulation are equivalent,
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1. According to Lagrange interpolation theorem we have that

N = mifilewon) £ (55' 0)-(1-z) mgﬁ] LF7].

Further g{z) = {1 — =) has a maximum for ¢’(z) =0,1e for 1- {1 —z)+z-(-1) =0, 0or z = 1/2.
Hence maxgep,yfe(l — 2)] = maxgep 1y g(2) = 1/2(1 — 1/2) = 1/4. which yields
1
if —mfllewon) < gilflizaion.

2. We multiply the differential equation by a test function v € H} = {v : |lv|| +|[v]] < co, v(0) =
0} and integrate over I. Using partial integration and the boundary conditions we get the following

variational problem: Find u € H}(I) such that

{1) jr(u"u’ + ') /fv, Yu € Hy(I).

A Finite Flement Method with ¢G(1) reads as follows: Find U € V)? such that
(2) /{U"v’ + al'v + Un) = /fv, v e VP ¢ HHD),
where ' 1

Ve = {v: v is piecewise linear and continuous in a partition of I, ¢(0) = v(1) = 0}.
Now let e = u — U/, then (77)-(?7) gives that
(3) / (e +ze'vtev)=0, Ywel?, {Galerkin Ortogonalitet).
We note that using e(0) = e(1) = 0, we get

(4) fwee— fda: 2meg)| ;frezz—%fjez,

Further, using Poincare inequality we have
leff* < [[¢']|%.

A priori error estimate: We use (77) and (77) to get
Ile’ |§Lg(1) + = |e||L2 = /(e e + ee) /(e’e’ + ze'e + ee)
!
= f (e (u—U) +ze'(u-U) +e(uﬁU)) ={v=U—mui(?7)}
I

= f! (e’(u ~rpu) -+ ze (U — mhu) + e{n — ﬂhu))

< NG = mae) el + fru = maullfle'l] + flu — mul] el
< (e = mnw) || + V2l = mra el e

< Cifllbe"]) + V2R P lell g

this gives that
el < 2C{||h]] -+ V2R3 ).

which is the a priori error estimate.
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A posteriori error estimate:
||e’l|%2(,) + %l[e“fﬂ2 = /;(e'e' + -;-ee) = /;(e’e" + ze'e -+ ee)
= l((u—- UYe +z(u—UYe+ (u—Ude)={v=e in (77)}
(5) - f[fe - fI(U’e’ +all'e+Ue) = {u=me in (?7)}
= /If(e - ge) /1‘ (U'(e —wpe) +aU'(e —mhe) + Ule — whe))
= {P.I. on each subinterval} = /I’R,(U)(e — The),

where R{U) 1= f+U" =gl - U = f—zU' - U, (for approximation with piecewise linears, U = 0,
on each subinterval), Thus (5) implies that

) 1 _ oo 1 1
e, + §I|8|I%, SRR IA™ e — muelll < CiliRRIHlE| < §C5';-2IIJ'17€(U)I§2 + §Il6’lligm,

where C; is an interpolation constant, and hence we have with |« [f = || - ||z,(s) that

lellar < GllRR{U) -

3. Let V' be the linear function space defined by
V = {v:v is continuous in £}, v =0, on 802}.
Multiplying the differential equation by v € V and integrating over Q we get that
—(Au, v) + (u,v) = (f,v), Ve eV,

Now using Green’s formula we have that
—(Au, Vv) = (Vu, Vu) —f {n-Vu)vds = (Vu, Vv), Yu e V.
a0

Thus the variational formulation is:
{Vu, Vo) + (u,v) = (f,v), Yo eV,

Let V5 be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 8L

Vi := {v:v is continuous piecewise linear in Q, » =0, on 6Q}.
The ¢G(1) method is: Find IJ € ¥, such that
(VU Vv + (U u) = (f,v) YveV,

Making the “Ansatz” U(z) = 305_, £1pi(2), where ; are the standard basis functions, we obtain
the system of equations

3
Zf;(f ch,--Vzpjd:r+/<pitpjd:c)=/f<,ojdw, =123,
i=1 ¢ 0 1

or, in matrix form,
{5+ M) =F,
where Sy = (V:, Vip;) is the stiffness matrix, My; = (01, ;) is the mass matrix, and Fj = (f, ;)
is the load vector.
We first compute the mass and stiffness matrix for the reference triangle T. The local basis

functions are
2
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1
¢1(T11$2)_1—%—%’ V¢1(mi,$2)=—};[ i ]s
1
da(xy, 22) = %' Vz(ny,29) = i [ [1] ] )
1
¢3($1,$2)=%, V¢3(3«‘1,$2)=H [ {1] ] .

Hence, with {7 = f.dz = h?/2,
2

1 1—':1.‘-2
m = (o) = [(Gtde =12 [ [ 0= a2 drdes =
T 0 Jo i2
811 2(V¢1.V¢1)=fT§V¢1Pdm: %;T§= 1.

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

T} & 1 1y h?

— — 2 e [

mu = (1, ) —/Td’ldw 3 Ez ¢1(933 = (0+ ] + 4) =13

where #; are the midpoints of the edges, Similarly we can compute the other elements and obtain

s2 11 2 -1 -1
m;”4121 3=%-110.
11 2 -1 0 1

We can now assembie the global matrices M and § from the local ones m and s

1
My = Mag = Mag = 2myy + dmgs = §h2, 511 = Sz = Sag = 2811 + 4999 =4,
1
Mg = My = 2mya = ﬁhz, Si2 = Sa3 = 2512 = —1,
Miz=0 Sig =0,

The remaining matrix elements are obtained by symmetry M;; = Mj;, Si; = S5, Hence,

h2610 4 -1 0
M= 1 81 =1 -1 4 -1 |.

2]y ¢ 0 -1 4

4, This is inspired from the proof of the Poincare inequality in the 1D cage: We have, due to the
vanishing boundary data, that

1 8
)| =, 22) ~ 0,2 = | [ 3wt o) i

)

= ' f 1. %u(fl,wg)dfll < {Cauchy’s inequality}
1

z 1/2 g 1/2
< 2 g A . - 2 3.
< (/; 1 dm) (/ﬂ (am_lu(%;xz)) dml)

t

a . \1/2

= (/l; {a—ﬁufwl:mz)} dml)

This implies that
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Lulz da,<f f(———uwl,mg dafl)dm
/f /f (T, zq}) dfl)dw1d$2
f /( u(Z,T2)) dml dmzm/ / wu{ml,xg) di) dg

= [ <
/ﬂ(amlu(ml,mg )° dx /IVu d,

which gives the desired result:

([zlulz da:)lﬂ < (/ﬂWul?dm)i/z.

5. See the Lecture Notes.
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