Mathematics Chalmers & GU
TMA372/MMGBS00: Partial Differential Equations, 2014-06--10, 8:30-12:30

Telephone: John Bondestam Malmberg: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-24p, VG: 25p-
For solutions and information about gradings see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1314/index.html

1. Prove the following error estimate for the linear interpolation for a function f € C?%(0,1),
171 = Flleatapy < (0= a1 | La(asy-

2, Prove an a priori and an a posteriori error estimate for the ¢G(1) finite element method for
—u'{zy+u(z)=f, O<z<l; 1(0) = u(1) = 0.

3. Let £ be the hexagonal domain with the uniform triangulation as in the figure below. Compute

¥

oht

N3

standard element
Ny

h 2h 1 2

the stiffness matrix and the load vector for the ¢G(1) approximate solution for the problem:

{ —~Au=1, in §, {the mesh size is h)

1 u =0, on O€1.

4, Consider the conveetion-diffusion problem
—~div(eVu+ fuy=f, in 1 C R?, w=0, on 8Q,

where Q is a bounded convex polygonal domain, £ > 0 is constant, 8 = (81(z}, Ba(z)) and f = f(z).
Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique
solution for this problem. Prove a stability estimate for u i terms of {if|iL,(n), € and diam (§2),
and under the conditions that you derived.
5, Consider the boundary value problem

(BV P) —A{alz) (z)) = f(z), G<a<], u(0)=u(l} =0, a(z) > 0.
Show that the variational formulation and minimization probiem for BVP are equivalent.
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TMA372/MMG800: Partial Differential Equations, 2014-06-10, 8:30-12:30.
Solutions.

1. Let Agfz) = Ei:_:o and A {z} = ’“—*5—- be two linear base functions, where & # §1, &, &1 €
{a,b}, can be taken as arbitrary mterpoiatlon points or just & = @, & = b. Then by the integral

form of the Taylor formula we may write

{ Fleo) = Fl@) + F@) (& — 2) + [2 (60 — v) () dy,
FE) =)+ F@) - )+ [ — ") dy,

Therefore, the linear function interpolating f in the points &, £ € [a,b], can be written as

I f(z) = Fl€o)re(m) + Fléi}A(z}
£ £1
= 1@ 20 [ -0 @i+ M) [ -0 W

and by the triangle inequality we get
o §1
1)~ Mg = @) [ @ -0 ) dr+ o) [ 6 -
o §1
<Po@| [ €~ wan]+ e [ @ -0l
“Eu ;
<@ [ o =l @y + el [l -yl @l
<o) [0 "l dy + (o) [ o-alrwna
< 6=a) (ool + @) [ 17l dy
B
— - (e - @) [ 1 @la=6-a [ 176l

Through repeated use of the Cauchy’s inequality it follows that

f |F(z) — Oy f(z)|Pda <_/a mﬁ»)z(fablf"{y)idy)zdm
= w-ar( [ irwm) = e-o( [ L)

b b
—ap [ ay [Py
ab a
=@t [ 15w dy.
4]
Consequently
b 1/2 b 1/2
([ 1@ -mstpas) " < o-0? ([ rwra)
and we have the desired result viz,

1 = i flligtany < (0= a)? 1" La(aty-
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2. We multiply the differential equation by a test function v € H}(I), I = (0,1) and integrate
over I. Using integration by parts integration and the boundary conditions we get the following
variational problem: Find w € H}(I) such that

(2) /(u’v’ +u'v) = /fv, Yy € H ().
I !
A Finite Element Method with eG(1) reads as follows: Find U € V2 such that
(3) f(U’v’%U’v):/.fv, vu e V2 c HA(D),
1 !

where Vi = {v : v is piecewise linear and continuous in a partition 75, of I, (D) = v(1}) = 0}.
Now let e = v — U, then (2)—(3) gives that

(4) (v +e) =0, VeV, (
We note that using e{0)} = e(1) = 0, we get
1 ‘
28 e2Y = Zietyil =0,
® ./eew Qd:t, ) 2(e)i0 0 {
Further, using Poincare mequahty we have
llel® < lle}f>.

A priori error estimate:We use Poincare inequality, Galerkin orthogonality {4), {5} and standard
interpolation estimates to get

llel?, = /(ee + ee) <2fee~2f(ee +ee) fl(e’{u—U)'Jre'(u—U))
=2/I(e’(uH7rhu) +e(u—7rhu)) -§-2_/I(e’(vrhu—U)'+e’(m,,u—U))

={v=U—-mu in(4)} = 2-/; (e (w—mpu) + e (u -~ ﬂ'h’tt})
< 2w — mru)lle’)] + 2w —~ myul] ')
< 2C{IIhu"|l + [R*a" | Hiell e

this gives that
ellz < Cofllba”} + W%},

which is the a priori error estimate.
A posteriori etror estimate:

lelZ: = /@e+ﬁe fee_z£@@+a@

=2 [((w= 0+ w-0Ye) = (v=c in (@) .
(6) =2f1fe-fi(U’e'+U’e)z{v=7rhe in {3)}
z/If(e%mle)—/;(U’(e—?rhe)'+U’(e—7rhe))

= {P.I. on each subinterval} = /R(U)(e — The),
!

where R(U) = f+U” - U" = f - U, (for approximation with piecewise linears, " = 0, on each
subinterval). Thus Cauchy Schwars and standard interpolation estimates implies that

ez < IRR(UMA e = muedlk < CllhR(O)Hle')) < CllRRUY Nlell g,
where C; is an interpolation constant, and hence we have with [} - [f = [ - | La(f) that

Nellgr < CilRR(U)|.
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3. Let V be the linear function space defined by
Vi={v:ve HY()), v=0, ondQ}.
Multiplying the differential equation by v € V and integrating over Q we get that
—(Au,v) = (1,%), Yu € V.
Now using Green's formula and the fact that v = 0 on 9§ \ T'1, we have that

—(Au, V) == (Vu, Vv) —/ (n+ Vu)vds = (Vu, Vo), Yu eV,
an

Hence, the variational formulation is:

(Vu, Vv) = (1,v), Yy € V.
Let V;, be the usual finite element space consisting of continuous piecewise linear functions sa-
tisfying the boundary condition v = 0 on @: Then, the ¢G(1) method is: Find U € V} such
that

(VU,Yv) = (L,v) WYveW
Making the “Ansatz” U/(x) = Z?’:l &ipi(x), where @;, 7 = 1,2,3 are the standard basis functions
corresponding to the interior nodes Ny, Na and N3, we obtain the system of equations

3
Zgjfv:,oi-wjdmsz@dx, i=1,2,3.
=1 9] 9]

In matrix form this can be written as S¢ = F, where Sij = (V;, Vip;) is the stiffness matrix, and
F; = (f,;) is the load vector.
We first compute the stiffness matrix for the reference triangle 7'. The local basis functions are

1
6’51(581,!32}"—*1“%—%, Vi (zy,w2) = 4 [ 1 },
1
¢'2($1}:‘E2) = %} V¢2(m11$2) = E [ é :| s
(].!?3{2:],332):%, V¢’3(m15$2):%" [: {]). ] '

Hence, with |T| = f.dz = h%/2, we can easily compute

11 = (Vo V) = [ [Vonffde = i =1,

-1
s12 = 82y = (Vo1, Vo) = [ = |T|=-1/2,
T
823 = 832 = (Vigha, Viha) = 0,

1
Sog = 83 = ... = E—ilTl = 1/2.
Thus by symmetry we get that the local stiffness matrix for the standard element is:
2 -1 1
1
5 = 7 -1 1 0
-1 0 1
We can now assemble the global stiffness matrix S from the local stiffness matrix s:
S11 = 4s11 = 4, S12 = 821 = 2812 = ~1 Sz =83 =0
S0 == 8393 = 4 Sa3 = 2812 = —1, Sag = dsn = 4.
The remaining matrix elements are obtained by symmetry S;; = Sj;. Hence,
4 -1 0
S=| -1 4 —-14.
0 -1 4

3



As for the load vector we have that

1h2 )
1,01 !,03_4“'—1”—1’!. (p2_8§?1—-—h

This the load vector is given by b= ?(2,4, 2)¢. Observe that, here S has become independent of
h.

4. Consider
(7) — div{eVu + fu) = f, in £, w=0on I=0Q.
a) Multiply the equation (7} by v € H}{(2) and integrate over {} to obtain the Green’s formula

- / div(eVu + fujvdr = /(EVu + fu) - Vide = f fudz.
Q Q Q
The variational formulation for our problem is now: Find v € H}() such that
(8) . a(u,v) = L(v), Vv e Hﬂl (€2),

where

alu,v) = /ﬂ(eVu + fu) - Vudz,

= fnfvdm.

According to the Lax-Milgram theorem, for a unique solution for (7) we need to verify that the
following relations are valid:

i)
i)

and

la(v,w)] < yllullgoyllelly@y, Yo, w e HE{Q),

a(v,v) 2 alivlling, Vv e H3{9),
i)

L) < Allollgy, Vv € HY(Q),
for some v, o, A > 0.
Now gince

[L(v}| = f/ﬂf'u dz| < [|fllcaenllvliLaey S Nl Lo ilolla @)

thus iii) follows with A = [|f{| ().
Further we have that

(v, w)] < [ Vo + pollVul ds < [ eIl + o] o
< ([ evol 11002 ds) " ( [ 1vupas)”
/2
< Vamaxte, lelle) [ (901 + 0% o)l o

= Yl|vl ol oy,

which, with ¥ = v2 max(e, ||8]]co), gives i).
Finally, if div@ <0, then

o{v, v) :fﬂ (elwof+ (8- Vo)) da = /Q (E[Vv|2 + (ﬁl;‘—;’]L +525‘9$—”2)v) dz

- 2, Lo @ 2t 8@ 02y gp - 's for
= /{; (EIVvI + 2(ﬂ1 B, {v) +,32&E2 {v) )) dz = Green's formula

=/s;(sva|2—%(divﬁ)v2) dxzfﬂaw-uﬁdx.
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Now by the Poincare’s inequality
[19aazc [ (vl 4% do = Clllis o,
0 Lt

for some constant C = C{Q), we have
a(v,v) > a||"u||%;1m), with a = Ce,

thus ii) is valid under the condition that div3 < 0.
From ii), (8) (with v = u) and ili} we get that

aliul|3n o < alw,v) = L(u) < Alfulla @),
which gives the stability estimate A

el < -

with A = ||f||Lyq) and ¢ = Ce defined above.
To summarize: The conditions for the Lax-Milgram theorem are:

FEL(N), BELoo()and V-850  a.e

5. See the Book and/or Lecture Notes.
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