Mathematics Chalmers & GU
TMA372/MMGR800: Partial Differential Equations, 2014-03—-12, 14:00-18:00 V Halls

Telephone: Mohammad Asadzadeh: 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-24p, VG: 25p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1314 /index.html

1. Let v be a continuously differentiable function on the interval (0,b) and || - || denotes the
L5(0,b)-norm. Show the following version of the Poincare inequality:

(1) loll? < b(0(0)2 + w(b)? + bl |1).
Hint: use integration by parts for fob/2 v?(x) dz and fbb/2 v?(z) dz, and note that - (z —b/2) = 1.

2. Let Q2 be the hexagonal domain with the uniform triangulation as in the figure below. Compute
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the stiffness matrix and the load vector for the ¢G(1) approximate solution for the problem:

—Au=1, in ,
(2) ou/0x =0, (x,y) €l :={(z,y) €00:x=2h, h<y<2h},
u=0, on 00\ T}.

3. Let 0 < a(x) < K for z € [0, 1], where K is a constant. Derive an a priori and an a posteriori
error estimate for the cG(1) finite element method for the problem

(3) —u" () + a(zx)u(z) = f(z), 0<z<l, u(0) = u(1) =0,

in the energy norm: ||e||%, = ||€/||? + ||v/ae||?. How does a priori error bound depend on K?

4. Let € be a positive constant, a(xz) > 0 and o'(z) < 0. Consider the boundary value problem
(4) —eu”" +a()u +u=f(z), 0<z<l, u(0) =0, u'(1)=0,

Show, the following Lo-stability estimates:

1 1/2
VEAlRI < Cllfll, e[ < Callfll el < Collfll, with ||w\|:(/0 w?dz)

5. Formulate and prove the Lax-Milgram theorem for symmetric scalar products (i.e. give the
conditions on linear and bilinear forms and derive the proof of the Riesz representation theorem).
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1. The assertion follows from the following elementary chain of calculus:

b b/2 b
112,00 :/ U2(x)dx=/ UQ(m)dH/ o*(z) da
’ 0 0 b/2

[z = b/2)v* (@)]g"* + [z = b/2)0* ()]} — /0 (x = b/2)20(x)0’ (z) da
b2

b b b b 1
< 5“(0)2 + 5”(5)2 +b[[v][[[v"]| < 5”(0)2 + 5”(5)2 + EHUIHQ + §||U||2~

2. Let V be the linear function space defined by
Vi={v:ve H(Q), v=0, on 92\ T }.
Multiplying the differential equation by v € V' and integrating over {2 we get that
—(Au,v) = (1,v), Yv e V.

Now using Green’s formula and the fact that v = 0 on 992 \ I'1, we have that

—(Au, Vv) = (Vu, Vo) — /69(71 -Vu)vds

= (Vu, Vv) — /

(n-Vu)vds — / (n-Vu)vds
AONTy

Iy

= (Vu, Vv) — / (n-Vu)vds = (Vu, Vv), Yv eV,
Iy

where in the last step we have that n|p, = (1,0), thus n - Vu = u, = 0 on I';. Hence, the
variational formulation is:

(Vu, Vo) = (1,v), Yo e V.

Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 9Q \ T'y: Then, the ¢G(1) method is: Find U € V}, such
that

(VU,Vv) = (1,v) Yv eV,
Making the “Ansatz” U(z) = Z?zl &p;(z), where @; are the standard basis functions (p; is the

basis function for the interior node N; and @9 and @3 are corresponding basis functions for the
boundary nodes N7 and N, respective) we obtain the system of equations

3
ZQ/V%--Vgpjdx:/fcpidx, 1=1,2,3.
Q Q

Jj=1

In matrix form this can be written as S§ = F, where S;; = (V;, Vi;) is the stiffness matrix, and
F; = (f, ¢;) is the load vector.
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We first compute the stiffness matrix for the reference triangle T'. The local basis functions are

o1(z1,22) = 1—%—%7 V¢1($17$2)=—% [ } },
b2(x1,22) = %7 Vo(r1,v2) = % { (1) } ,
1
¢3(x1,22) = %2, Vosz(z1,22) = 7 [ (1) } .

Hence, with |T| = [, dz = h?/2, we can easily compute
2
1= (V1 Vo0 = [ (Vo do = 57 =1,
T

—1
s12 = 821 = (Vo1, Vo) = / ﬁ|T| =-1/2,
T
So3 = 830 = (Vo Vp3) = 0,

1
S99 — 833 — ... = ﬁ‘T| = 1/2.
Thus by symmetry we get that the local stiffness matrix for the standard element is:
1 2 -1 -1
-1 0 1

We can now assemble the global stiffness matrix S from the local stiffness matrix s:

511:2811+4822:2+2:4, S12 = 521 = 893 =0 513:312:_1/2
5222822:1/2 5232812:—1/2, 533:811:1/2.
The remaining matrix elements are obtained by symmetry S;; = Sj;. Hence,
1 8§ 0 -1
-1 -1 2

As for the load vector we have that

1 h2 1h2 h2
/<P1—6*1—h2 /<P2 /% =5

This the load vector is given by b = h?(1,1/6,1/6)'. Observe that, here S has become independent
of h.

3. We multiply the differential equation by a test function v € H} = {v : ||v|| +|[v'|| < o0, v(0) =
v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u € H}(I) such that

(5) /I(u’v' + auv) = /va, Vv € Hy(I).

Then, the ¢G(1) Finite Element Method reads as follows: Find U € V)0 such that
(6) /I(U’v’ +alv) = /va, Yo e Vi c Hi(I),

where

V¥ = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Let now e = u — U, then (5)- (6) gives that

(7) /(e’v’ +aev) = Yo € V2, (Galerkin Orthogonality).
I
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A posteriori error estimate: We use again ellipticity (?7?), Galerkin orthogonality (7), and the
variational formulation (5) to get

lel|% = /I(e'e' + aee) = /((u —U)e +alu—U)e) ={v=cin(5)}

I

(8) = [ fe— /I(U’e’ +aUe) = {v = mpein(6)}

I
:/If(e—ﬂhe)—/I(U’(e—whe)’—&—aU(e—ﬂ'he)) z/IR(U)((e—ﬂhe).

where R(U) = f+U"” —aU = f — aU (since U” = 0 for U € V}0). Further in the last equality
we use partial integration and the fact that e(x;) = (we)(x;), for j:s being the node points. Thus
Hence, (8) yields:

lellE < ClIARWU)|,nllh™ (e = mne) | ory < Cil ARU) | Loy ll€ | ar)
< Gil[hR(U) | oo lell -

Consequently we have the a posteriori error estimate

(10) lelle < CillhR(U) || (1)-

A priori error estimate: We use a short hand notation, viz:

(11) (v,w)p = /(v'w' +ovw)dz, and |[v]|% = (v,0)p = /(v'2 + awv?).
Thus, by the Galerkin ort;ogonality reads as '

(12) (e,v)g =0, YveV

Hence, we compute using (12) with v = U — wpu, with m,u being the interpolant of w, that

9)

(13) lelld = (e,e)p = (e,u—U)g = (e,u — mpu)p — (e, U — mpu)p = (e,u — mhu)p
< llellellu — mhull g,
where in the last step we used the Cauchy-Schwarz inequality. This gives that
(14) lelle < [lu—mhull g
But for the interpolation error we have that
lu —mpul| % = [[(u = mpw) | % + [Valu — mpu)||E

< CY |7, () + CEK[IW?u" |12, 1)-

This yields the a priori error estimate , viz

(16) lelle < (b e + VE IR ).

(15)

4. Multiplication by u gives

1
1 1
€|IU’|I2+/O ou'wdz + |[ull* = (f,u) < [ fllllull < SIAP + 5l

Here
1 1 /1
/ av'udr = f/ a—u? dx
0 2 )y dx
(17) ) L
= —a(1)u(1)? - f/ o/u? dx >0,
2 0
and hence ) )
N2 L 2 ll2 < Z(1Fl2.
el |12+ 211l < S50

This proves

(18) VEllIE< LA Tl < T
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Multiply the equation by au’ and integrate over x to obtain
1 1
1 1
—8/ u”’ o dx + ||ad || —|—/ au'udr < Z||f||? + §||au’||2.
0 0

Hence by (11)
2 2 ! d 2
/ < . / d
oI <171+ [ oo e

1
— [If]? — ca(0)u (0)* — ¢ / of (u)? de
0
<A1 + | elle| 2 < 112 + Celle |1

Using also (12) we conclude

(19) lla/|| < ClIf]]-
Finally, by the differential equation and (12) and (14) we get
ellu”[] = [|f — o’ — || < |[f]| + llaw[] +|[ul| < C[f]]-

5. See the Book and/or Lecture Notes.
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