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1. Let v be a continuously differentiable function on the interval (0, b) and ‖ · ‖ denotes the
L2(0, b)-norm. Show the following version of the Poincare inequality:

(1) ‖v‖2 ≤ b
(

v(0)2 + v(b)2 + b‖v′‖2
)

.

Hint: use integration by parts for
∫ b/2

0
v2(x) dx and

∫ b

b/2
v2(x) dx, and note that d

dx (x − b/2) = 1.

2. Let Ω be the hexagonal domain with the uniform triangulation as in the figure below. Compute
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the stiffness matrix and the load vector for the cG(1) approximate solution for the problem:

(2)







−∆u = 1, in Ω,
∂u/∂x = 0, (x, y) ∈ Γ1 := {(x, y) ∈ ∂Ω : x = 2h, h ≤ y ≤ 2h},
u = 0, on ∂Ω \ Γ1.

3. Let 0 < α(x) ≤ K for x ∈ [0, 1], where K is a constant. Derive an a priori and an a posteriori

error estimate for the cG(1) finite element method for the problem

(3) −u′′(x) + α(x)u(x) = f(x), 0 < x < 1, u(0) = u(1) = 0,

in the energy norm: ||e||2E = ||e′||2 + ||√α e||2. How does a priori error bound depend on K?

4. Let ε be a positive constant, α(x) ≥ 0 and α′(x) ≤ 0. Consider the boundary value problem

(4) −εu′′ + α(x)u′ + u = f(x), 0 < x < 1, u(0) = 0, u′(1) = 0,

Show, the following L2-stability estimates:

√
ε||u′|| ≤ C1||f ||, ||αu′|| ≤ C2||f ||, ε||u′′|| ≤ C3||f ||, with ||w|| =

(

∫ 1

0

w2 dx
)1/2

.

5. Formulate and prove the Lax-Milgram theorem for symmetric scalar products (i.e. give the
conditions on linear and bilinear forms and derive the proof of the Riesz representation theorem).
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1. The assertion follows from the following elementary chain of calculus:

||v||2L2(0,b) =

∫ b

0

v2(x) dx =

∫ b/2

0

v2(x) dx +

∫ b

b/2

v2(x) dx

= [(x − b/2)v2(x)]
b/2
0 + [(x − b/2)v2(x)]bb/2 −

∫ b

0

(x − b/2)2v(x)v′(x) dx

≤ b

2
v(0)2 +

b

2
v(b)2 + b||v||||v′|| ≤ b

2
v(0)2 +

b

2
v(b)2 +

b2

2
||v′||2 +

1

2
||v||2.

2. Let V be the linear function space defined by

V := {v : v ∈ H1(Ω), v = 0, on ∂Ω \ Γ1}.

Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) = (1, v), ∀v ∈ V.

Now using Green’s formula and the fact that v = 0 on ∂Ω \ Γ1, we have that

−(∆u,∇v) = (∇u,∇v) −
∫

∂Ω

(n · ∇u)v ds

= (∇u,∇v) −
∫

∂Ω\Γ1

(n · ∇u)v ds −
∫

Γ1

(n · ∇u)v ds

= (∇u,∇v) −
∫

Γ1

(n · ∇u)v ds = (∇u,∇v), ∀v ∈ V,

where in the last step we have that n‖Γ1
= (1, 0), thus n · ∇u = ux = 0 on Γ1. Hence, the

variational formulation is:

(∇u,∇v) = (1, v), ∀v ∈ V.

Let Vh be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on ∂Ω \ Γ1: Then, the cG(1) method is: Find U ∈ Vh such
that

(∇U,∇v) = (1, v) ∀v ∈ Vh

Making the “Ansatz” U(x) =
∑3

j=1 ξjϕj(x), where ϕj are the standard basis functions (ϕ1 is the
basis function for the interior node N1 and ϕ2 and ϕ3 are corresponding basis functions for the
boundary nodes N1 and N2, respective) we obtain the system of equations

3
∑

j=1

ξj

∫

Ω

∇ϕi · ∇ϕj dx =

∫

Ω

fϕi dx, i = 1, 2, 3.

In matrix form this can be written as Sξ = F, where Sij = (∇ϕi,∇ϕj) is the stiffness matrix, and
Fi = (f, ϕi) is the load vector.
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We first compute the stiffness matrix for the reference triangle T . The local basis functions are

φ1(x1, x2) = 1 − x1

h
− x2

h
, ∇φ1(x1, x2) = − 1

h

[

1
1

]

,

φ2(x1, x2) =
x1

h
, ∇φ2(x1, x2) =

1

h

[

1
0

]

,

φ3(x1, x2) =
x2

h
, ∇φ3(x1, x2) =

1

h

[

0
1

]

.

Hence, with |T | =
∫

T
dz = h2/2, we can easily compute

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|2 dx =
2

h2
|T | = 1,

s12 = s21 = (∇φ1,∇φ2) =

∫

T

−1

h2
|T | = −1/2,

s23 = s32 = (∇φ2,∇φ3) = 0,

s22 = s33 = . . . =
1

h2
|T | = 1/2.

Thus by symmetry we get that the local stiffness matrix for the standard element is:

s =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

We can now assemble the global stiffness matrix S from the local stiffness matrix s:

S11 = 2s11 + 4s22 = 2 + 2 = 4, S12 = S21 = s23 = 0 S13 = s12 = −1/2

S22 = s22 = 1/2 S23 = s12 = −1/2, S33 = s11 = 1/2.

The remaining matrix elements are obtained by symmetry Sij = Sji. Hence,

S =
1

2





8 0 −1
0 1 −1

−1 −1 2



 .

As for the load vector we have that
∫

Ω

ϕ1 = 6
1

3

h2

2
.1 = h2,

∫

Ω

ϕ2 =

∫

Ω

ϕ3 =
1

3

h2

2
.1 =

h2

6
.

This the load vector is given by b = h2(1, 1/6, 1/6)t. Observe that, here S has become independent
of h.

3. We multiply the differential equation by a test function v ∈ H1
0 = {v : ||v||+ ||v′|| < ∞, v(0) =

v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u ∈ H1

0 (I) such that

(5)

∫

I

(u′v′ + αuv) =

∫

I

fv, ∀v ∈ H1
0 (I).

Then, the cG(1) Finite Element Method reads as follows: Find U ∈ V 0
h such that

(6)

∫

I

(U ′v′ + αUv) =

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Let now e = u − U , then (5)- (6) gives that

(7)

∫

I

(e′v′ + αev) = ∀v ∈ V 0
h , (Galerkin Orthogonality).
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A posteriori error estimate: We use again ellipticity (??), Galerkin orthogonality (7), and the
variational formulation (5) to get

‖e‖2
E =

∫

I

(e′e′ + αee) =

∫

I

((u − U)′e′ + α(u − U)e) = {v = ein(5)}

=

∫

I

fe −
∫

I

(U ′e′ + αUe) = {v = πhein(6)}

=

∫

I

f(e − πhe) −
∫

I

(U ′(e − πhe)′ + αU(e − πhe)) =

∫

I

R(U)((e − πhe).

(8)

where R(U) = f + U ′′ − αU = f − αU (since U ′′ ≡ 0 for U ∈ V 0
h ). Further in the last equality

we use partial integration and the fact that e(xj) = (πe)(xj), for j:s being the node points. Thus
Hence, (8) yields:

‖e‖2
E ≤ C‖hR(U)‖L2(I)‖h−1(e − πhe)‖L2(I) ≤ Ci‖hR(U)‖L2(I)‖e′‖L2(I)

≤ Ci‖hR(U)‖L2(I)‖e‖E .
(9)

Consequently we have the a posteriori error estimate

(10) ‖e‖E ≤ Ci‖hR(U)‖L2(I).

A priori error estimate: We use a short hand notation, viz:

(11) (v, w)E =

∫

I

(v′w′ + αvw) dx, and ‖v‖2
E = (v, v)E =

∫

I

(v′2 + αv2).

Thus, by the Galerkin orthogonality reads as

(12) (e, v)E = 0, ∀v ∈ V 0
h .

Hence, we compute using (12) with v = U − πhu, with πhu being the interpolant of u, that

‖e‖2
E = (e, e)E = (e, u − U)E = (e, u − πhu)E − (e, U − πhu)E = (e, u − πhu)E

≤ ‖e‖E‖u − πhu‖E ,
(13)

where in the last step we used the Cauchy-Schwarz inequality. This gives that

(14) ‖e‖E ≤ ‖u − πhu‖E .

But for the interpolation error we have that

‖u − πhu‖2
E = ‖(u − πhu)′‖2

E + ‖
√

α(u − πhu)‖2
E

≤ C2
i ‖hu′′‖2

L2(I) + C2
i K‖h2u′′‖2

L2(I).
(15)

This yields the a priori error estimate , viz

(16) ‖e‖E ≤ Ci

(

‖hu′′‖L2(I) +
√

K‖h2u′′‖L2(I)

)

.

4. Multiplication by u gives

ε||u′||2 +

∫ 1

0

αu′u dx + ||u||2 = (f, u) ≤ ||f ||||u|| ≤ 1

2
||f ||2 +

1

2
||u||2.

Here
∫ 1

0

αu′u dx =
1

2

∫ 1

0

α
d

dx
u2 dx

=
1

2
α(1)u(1)2 − 1

2

∫ 1

0

α′u2 dx ≥ 0,

(17)

and hence

ε||u′||2 +
1

2
||u||2 ≤ 1

2
||f ||2.

This proves

(18)
√

ε||u′|| ≤ ||f ||, ||u|| ≤ ||f ||.
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Multiply the equation by αu′ and integrate over x to obtain

−ε

∫ 1

0

u′′αu′ dx + ||αu′||2 +

∫ 1

0

αu′u dx ≤ 1

2
||f ||2 +

1

2
||αu′||2.

Hence by (11)

||αu′||2 ≤ ||f ||2 + ε

∫ 1

0

α
d

dx
(u′)2 dx

= ||f ||2 − εα(0)u′(0)2 − ε

∫ 1

0

α′(u′)2 dx

≤ ||f ||2 + ||α′||ε||u′||2 ≤ ||f ||2 + Cε||u′||2.
Using also (12) we conclude

(19) ||αu′|| ≤ C||f ||.
Finally, by the differential equation and (12) and (14) we get

ε||u′′|| = ||f − αu′ − u|| ≤ ||f || + ||αu′|| + ||u|| ≤ C||f ||.

5. See the Book and/or Lecture Notes.
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