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Mathematic Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2013-08-28, 8:30-12:30 V Halls

Telephone: Anders Martinsson:; 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-24p, VG: 25p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1213/index.html

1. Derive the cG(1)-cG(1), Crank-Nicolson approximation, for the initial boundary value problem

0 - = f, O<az<l, ¢>0
u'{0,t) = u/(1,8) =0, u(x,0)=0, =ze&l0,1], ¢t>0,

2. Consider the following boundary value problem:

(2) (oY +pu' +yu=§f, O<z<l, u(0) = u{l) =0,
with the corresponding variational formulation
(3) a(u, p) = L((,O), Yo e H[}

Show that if ez} > ap > 0, and () — §'(x)/2 2 0, for z € I = [0, 1], then (2) admits a unique
solution u € H} satisfying the stability estimate

mmgiwn

3. Consider the boundary value problem
—(aY =f, O<z<], u(0) =4'(1) = 0.
(a) Show that the solution of this problem minimizes the energy integral

Flo) = %/01 a(v')? — /:fv,

ie., we have that u € V where V' is some function space and F(u) = min,eyv F(),
(b) Show that for ¢ = 1, and for a corresponding discrete minimum: F () = minyey, Fv), with
U eV, CV, we have that .
FU) = F() + i - U
{c) Let o = 1 and show an a posteriori error estimate for the discrete energy minimum: ie., for
|F(U) — F(u)|, with V, being the space of piecewise linear functions on subintervals of length h.
4. Consider the Poisson equation with the Neumann boundary condition:
(4) ~Au=f, in e R2 with  —n-Vu=ku, on O,
where k£ > 0 and n is the outward unit normal to 8Q (90 is the boundary of ).
a} Prove the Poincare inequality:  flullp, ) < Colljuliz,an) + Vulir,))
b) Use the inequality in a) and show that [full;, 0y — 0 as & — cc.
5. Let U be the continuous piecewise linear finite element approximation of the two point boundary
value problem
~(a(zx)u'(2)) = flz) O<a<l, u(0) = u(1) =0, a(e) = 0.
Prove the following a posteriori error estimate (C; is an interpolation constant):
ffw" = U'lla < Cillh BU) |-
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1. Make the cG(1)-cG(1) ansatz
Ulz, t) = Un—1(z)Pn—1(2) + Un(@)n (1), with  Un{z) = ZUH.J“P}' (=),

in the variational formulation

1 1
f / u'y’ :_/ f fv, In = (a1, t0).
I. Jo . Jo

Recall that v = @,(z), j=1,..., M and
—t tnﬁl

-2 B — n ——
sl = 222 = S
For a uniform tile partition with & := t — tp—1, this yields the equation system
(M + —S}U = (M — —S)U _1 + kby.
Here U, is the node-vale vector with entries U, ;, M is the mass-matrix with elements j;) wi(x)pi(z),

S is the stiffness-matrix with elements fn wi(z)pi(z), and by, is the load vector with elements
£ L. f[} fwi(z). The corresponding dGO (= implicit Euler} time-stepping yields

(M + kS = MU,,—; + kb,.

2. The variational formulation would be

H 1 .
(5) a(u, @) = f (o' + Bu'p + yup) do = / fods = L(p), Vye Cp.
0 0
Note that by Cauchy-Schwarz inequality we get the Poincare's inequality:

ol < IRl
which gives '
2 AL Va2 1
(6) oy = (il + 11F) " < VaIR'IR, vo e B,
Furthermore by the assumptions
' 2 1,21, ! Lon o 2
/ (B'v + yidr = {fﬁv‘} —f—/ (v—=08% de >0, YweH;.
o 2 o a 2
Now using (6) and the assumptions we have that
a{v.v) = lll_i{{zl afz)e'|)? = “L‘l Vv € Hy.
s -
Thus a(-. -} is coercive in Hy. Morcover, estimating the coefficients in the (3} by their maxima and
wsing the Canchy-Sceliwartz inequality. we have

1
Ja(i )] < C/ ({-z"u:’[ + o] + ﬁuwl) de < Cllefl el
o

we have that the bilinear form a(v, w) is bounded in Hj. Now since L(-) is also bounded in H}:

1L(o)] = 1(F o)l < WFH el Yo € H,

we have nsing Lax-Milgram lemma that the (5) admits a unique solution.
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Finally o
= lully < alww) = (fu) < NiFHMull < BFH Iy
proves the last statement, that:
tully < =111
g

3. (a) See lecture notes, chapter 8, page 8.3 (the only modification is that you put g = 0). Thus
from the differential equation for u it follows, after multiplication by w and using integration by
parts, that

1 1
(7N / av'w de = / fuw dz.
o 0
Hence, for arbitrary v = 4 + w we have that
1 1 1
(8) F(v) = Flu+v) = F(u) +/ e'w' dz —/ fwdz +f a(w')? dz > Flu),
0 0 0

since using (1) the first two integrals are add up to zero and the third integral is > 0.
(b} Let @ = 1 and use the following Galerkin orthogonality:
1
(9 / (u—UYu'de=0, YveW,
0
with v replaced by U to get

1 1
= 0Y1P = [ (=Y - V) do = [w-vyavy e
(10) 4] 1]

1
o

1
= / (') dz - / (U'Y? da = —2F(u) + 2F(U),
0
where we have used the identities
1
(11) 2F (1) = Ju||? - Zf fude={withw=uvanda=1in (1)} = —il|2,
0

and similarly 2F{U) = —jU’||>.
(c) Recall that in the one dimensional case, we have the interpolation estimate, (see problem 1),
" — T}l < Gillafll,
where C; is an interpolation constant. This gives using (b) that
{F(U) — F{u)} < CElRFII®.

4. a) There is smooth function ¢ such that A¢ = 1 so that, using Greens formula

i = [ wao= [ wo0- [ 20909
Q a0 0
1, . 1 . o
< Cullulidg + CallullFull < Cullulha + 5 llulfh + 5CFIVul.

This yields .
2 2 2 2 2 2 2
lulld < 20 jullde + G5 Vaully < C(lullde + HVela),
where C% = max(2C;. C2), C) = maxaq 10,0}, and Cy = maxe(2|Vel}.
1) Multiply the equation —Aw = f by u and integrate over 2. Partial integration togetler with
the houndary data —fqn = ku and Cauchy’s inequalisy, yields

w4+ Ellufizo = u- + w{ =Dy = | u(—Au) = “u
\Vul + kuiq /Qv Vu fm (~Outt) ]ﬁz( Au) /Qf
<l Flla < Callubon + [Vull)i e = lulonCal fla + | VulaCall i

1 1
< §ﬂ“!i§§z + :_;"”V“Hs%z + Gl /1
2
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Subtracting 3 [iull3;, + 2 Vulld from the both sides, we end up with
1 1 1
(k= lluflde < FHVulll + (- lulza < Callfli
which gives that jlullag — 0 as & — oo,
5. See the Book and/or Lecture Notes.
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