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Telephone: Jakob Hultgren: 0703-088304

Caleulators, formula notes and other subject related material are not allowed.

Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU students G:15-24p, VG: 25p-
For solutions and gradings information see the couse diary in:

http:/ /www.math.chalmers.se/Math/Grundutb/CTH/tma372,/1213/index.html

1. 71 f is the linear interpolant of a twice continuously differentiable function f on I. Prove that
I —mfllen € 06—’ ey, T=(ab)

2, Derive ¢G(1) a priori and a posteriori error estimates, in the norm ||es|| for the problem,

—tUpe +ux = f, z€(0,1); u(0)=wu(l)=0. £ U — Up

3. Formulate the cG(1) piecewise continnous Galerkin method for the boundary value problem
-Au+u=f =zl w=0 zed\{IHUl), Vu-n=0 oeliul,,

on the domain (2, with outward unit normal n at the boundary (see fig.). Write the matrices for
the resulting equation system using the following mesh with nodes at Ny, Ny and V.

r, "

N standard element

|

4. a) Show that the Ly norm of the solution to the following Schrédinger equation is time inde-

pendent
L+iAu =0, in$, w=0, ond, i=v—1, w=uy +ius

Hint: Multiply the equation hy @ == u; — fuy, integrate over {1 and consider the real part.
1) Cousider the corresponding eigenvalue problem, of finding (A, w # 0, such that
' —Au=A InQ, u=0, ond,
Show that A > 0, aud give the relation between {Ju|| and ||Vu|] for Ais eigenfunction .
c) What is the optimal constant ' (expressed in terms of smallest cigenvalue A;), for which the
inequality [Jul| < CHVull can illfil for all lunetions «, such that « = 0 on 37

5. Fornulate and prove the Lax-Milgram Theorem
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1. Let Ao(z) = 252 and M (z) = E”i: 2 be two linear base functions. Then by the integral form

& —za
of the Taylor formula we may write

{ FlEo) = F(@) + F@)E — )+ [ (6o — 1) " () d,
F6) = f@)+ F@)6 —2) + [ & - i) dy,
Therefore
T f(z) = fl&o)rolz) + )M (z)
) £o £
= £(x) + o(2) f (b0 — )" () dy + M (=) f &~ 0)f"(v) dy

and by the triangle inequality we get

Ea £y
17(@) ~ T @) = Prote) [ (60 = 1) @) dy + Ma(e) [ @-urwal

&o &3

< o] [ e~ o) ] + | [ 6wl
£n £1

< Po@ [ oo~ ") -+ Ina) [l wilr @l
Lo L1

<o(@) [ - @l @)l dy + () [ e-alrwia
T b &

<6~ ) (Polall+ Ma(@)l) [ 1wl dy

b b
= (= a) (Mo + M@) [ 1@y =6 =a) [ 1" Wiy
Consequently

/ (@) - M) < [ (- / £l do) = (6= 0PI e

2. We multiply the differential equation by a test function v € H} = {v: {|v]i+||v'l| < o0, v{0} =
v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u € H}(I) such that

(1) /(u"u’ +u'v) = ff'u, Yo € HA(D).
1 7

Or equivalently, ind u € H} () such that

(2) (umﬁum) + (uw,v) = (f: 'U)! Vv € H(:} (I);

with {-,-} denoting the Ly(I} scalar product: {u,v) = [, u(z)v{z)dz. A Finite Element Method
with c(¥(1) reads as follows: Find uj, € V2 such that

{3) ‘/‘(u‘}b'v’ +upv) = ffv, vo e V& € Hy{D),
I I
where

V2 = {v: v is piecewise linear and continuous in a partition of I, »{0) = v(1) = 0}.
1



Or equivalently, find ), € V¥ such that
(4) (uh,m:'v:r) + (uh,mav) = (.f: 'U): Vv € V}?
Let now
a(tt,v) = (g, Vo) + (U, v},
We want to show that a(-,-) is both elliptic and continuous:

ellipticity
(5) a(it, u) = (Ug, Up) + (Ug, U) = {2t 12,

where we have used the boundary data, viz,

foluzudm = [E;]:} =0.

continuity
{6) a(1,v) = (g, v5) -+ (tay v) < litialllfvall + lfusllilv]l < 2lluzil{lvel]

where we used the Poincare inequality {|v]] < [fvz|]-
Let now e = u — up, then (2)- (4) gives that

(1) alw—un,v) = (ty — Uz Vg) + (U — Une,v) =0, VO E V2, (Galerkin Orthogonality).

A priori error estimate: We use ellipticity (5), Galerkin orthogonality (7), and the continuity (6)
to get

e — unuf? = alu - Uny U up) = ale ~ up, % — v) < vy — vpollfite —vell, WE V2.
This gives that
{8) g ~ vhell < 2ue —vall, Vv E Vi‘?a

If we choose v = mpu € V)0, the interpolant of 4, and use the interpolation estimate we get from
(8) that

(9) lte — tholl < 2o — (ru)all < 2Ci{ R

A posteriori error estimate: We use again ellipticity (5), Galerkin orthogonality (7), and the vari-
ational formulation (1) to gst

llexl? = ale, €) = ale, & — we) = alu, & — we) — alun, e — 7e)
(10) = (f,e— we) — a{up, e — we) = (fre — me) ~ (Upz: €z — (ME)e) ~ (Unyzy € — 7e)
= (.f — Uk € — 71'3) < Cilh{f - uh,w)””em“s

where in the last equality we use the fact that e(z;) = (me}(z;), for j:s being the node points, also
Up e = 0 on each I := (zj_1,z;). Thus

(U e — (7E)g) = — Z_/, Up, 2z — TE) + Z (uh,w(e —we)) L_ ={.
7 d G 3

Hence, (10) yields:

(1 lezll < CIA(S — una)ll.
2



3. Let V be the linear function space defined by
Vi :={v:v is continuous in , v=0, on I\ (T3 UT2)}.
Multiplying the differential equation by v € V and integrating over £ we get that
—(Au,v) + (u,v) = (f,v), Yo e V.

Now using Green’s formula we have that

—{Au, Vo) = (Vu, Vo) — [8 (n-Vu)vds
1)

= (Vu, Vv) — / (nVu)vds — / fn-Vu)vds
K 59\(F1U1—'3) iU,
= (Vu, V), YoeV.
Thus the variational formulation is:
(Vu, Vo) + (u,v) = (f,v), Yo e V.

Let V3 be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 802 \ (L1 U ) The ¢G(1) method is: Find U € V3 such
that

(VU, V) + (U,0) = (f,v)  WweV

Making the “Ansats” U(z) = o, &xi(2), where ; are the standard basis functions, we obtain
the system of equations

ZE” fvwz v@3d$+/‘Pa‘de93 ffﬁ% y =123,

i=1
or, in matrix form,
(S+M)§=F,
where Si; = (Vi;, Vip;) is the stiffness matrix, M;; = (i, ;) is the mass matrix, and F; = (f, ;)
is the load vector.

We first comnpute the mass and stiffness matrix for the reference triangle T. The local basis
functions are

1§1
¢1($1,932)=1‘“%”§h3, Véi(zy,%2) = % [ 1 }
1
¢o(zy1,z2) = %, Véa(z1,2) = % [ é ]
1[0
da(xy,29) = a;_:a Va(z1, 22) =7 [ 1 }

Hence, with |T| = [, dz = h%/2,
12

1--z2
mi = ¢17¢1 f¢1d$ h2/ / (1~m1—m2)2da:;d3:2 E== ‘;-2’

s11 = (Vehy, V1) = /T |V |? de = h_2|T§ =L

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3k

2 2
m]l—(¢1,¢1)—/¢1dm_| IZ¢; %(0+%+%):%5

F=1
3
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where 4; are the midpoints of the edges. Similarly we can compute the other elements and obtain

2 11 2 -1 -1
2 1
m = W 1 2 19, 8= -1 1 0
11 2 -1 0 1
We can now assemble the global matrices M and S from the local ones m and s:
8
M;iy = 8mgg = ﬁh?, Si1 = 8Bagp = 4,
1
Mo = 2myp = -l—ihz, S = 2812 = —1,
1
Mia = 2mgy = Eh2, S13 = 2893 = 0,
4
Mgy =4dmy = 1—2"1'?;2, Sop = 4833 = 4,
1
Moz = 2mya = -I—th,, Sy = 2912 = —1,
3
Mgy = 3maz = ﬁh2n Sas = 3522 = 3/2.
The remaining matrix elements are obtained by symmetry My; = Mji, S = Sy;. Hence,
2 § 11 4 -1 0
M=-—11 4 1}/, §=1-1 4 -1
1 13 0o -1 3/2

4. a} We multiply the shrodinger equation by & and integrate over {1 to obtain

fﬂﬂ+i/ﬁVu:f(u1ﬂ1 +u2ﬁ2)+i/(u1ﬂg_’l.!.2’&] - Vit Vu) =10,
43 Q 1] 1]

Now both real and imaginary part of the above expression is 0. Thus, considering the real part,
we have

R . 18 .
fn(uwi + uglly) = 3% /ﬂ(uﬁ +ul) =0,

therefore [, jul? is independent of the time.

b) Multiplying the eigenvalue equation _Au = Au by u, integrating over £}, and using partial

integration we get
/\]u2=/u(ﬁAu)=f|Vul2,
o] 0 Q

which gives A > 0 {and also ) > 0, for u # 0). Further lju|| = Z={|Vuil. This indicates that the

constant in the estimate |ju|| < C||Vull, satisfying for all functions with © = 0 on T' := 84,
can not be smaller than —171, with A; > 0 being the smallest eigenvalue. As a matter of fact we
have the inequality |Ju]| < -\%ﬁHVuH, for all w with u = 0 on I'. This is due to the fact that
we can Tepresent u in terms of orthogonal eigenfunctions both “with and without gradient”, i.e.

Jouwiu; = fﬂ Vu; - Vuy =0, for 1 # j.
5. See the Book and/or Lecture Notes.
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