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TMA372/MMGS800: Partial Differential Equations, 2012—08-29, k1 8:30-12:30 V Halls

Telephone: Magnus Onnheim: 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-24p, VG: 25p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1112 /index.html

1. Prove the following error estimate for the linear interpolation for a function f € C?(0,1),
s = fllzaion < g goas 17 (€)
1 Loo(0,1) = g M0AX .

2. Let a and (8 be positive constants. Give the piecewise linear finite element approximation
procedure, on the uniform mesh, for the problem

—u"(r)=1, 0<z<I; w0) =, u'(1)=4.

3. Formulate the ¢G(1) method for the boundary value problem
—Autu=f xe u=0, x¢€dN.

Write down the matrix form of the resulting equation system using the following uniform mesh:

4. Prove an a priori and an a posteriori error estimate for the cG(1) finite element method for
—u"(x) + zu/(z) +u(z) = f(z), 0<z<1, u(0) = u(1) =0,
in the energy norm ||v||g with ||v]|% = ||v||%2(1) + ||v’|\%2(1), I:=(0.1).

5. Formulate and prove the Lax-Milgram theorem.
MA
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1. By the Lagrange interpolation theorem

1
- <l oo a8
1f =mfllzwon < 5@ =0)- (1 —z) max |f7]

Further, the function g(x) = (1 — ) has minimum when ¢'(z) =0,ie. 1- (1 —2)+z-(-1) =0,
or for = 1/2. Therefore, max,¢o,1][z(1 — )] = max,¢jo,1) 9(z) = 1/2(1 — 1/2) = 1/4. Hence

1
1/ =mifllwon < gl a0

2. Multiply the pde by a test function v with v(0) = 0, integrate over = € (0,1) and use partial
integration to get

1 1
— [u'v]y + / u'v' dx = / vdx =
0 0

(1) — 4/ (1)v(1) + u/(0)v(0) +/0 u'v' dz :/0 vde <<

1 1
— Bo(1) +/ u'v' dr = / vdz.
0 0

The continuous variational formulation is now formulated as follows: Find
1
(VF) weV:i={w: / (w(:z:)2 + w'(a:)z) dr < oo, w(0) = a},
0
such that
1 1
/ u'v' dr = / vdz + fv(l), Yve VP,
0 0
where 1
VY= {v: / (v(x)2 +v'(x)2> dx < oo, v(0)=0}.
0

For the discrete version we let 7;, be a uniform partition: 0 = xg < 1 < ... < zpr41 of [0,1] into
the subintervals I, = [x,—1, 2], n =1,... M + 1. Here, we have M interior nodes: x1, ...z, two
boundary points: g = 0 and xp;41 = 1 and hence M + 1 intervals.

The finite element method (discrete variational formulation) is now formulated as follows: Find

(FEM) U €V}, := {wy, : wy, is piecewise linear, continuous on 75, wy(0) = a},

such that

1 1
(2) / U'vj, dx = / vp dz + Bop (1), Yo e VP,
0 0

where

V2 := {vy, : vy, is piecewise linear, continuous on 7y, v4(0) = 0}.
Using the basis functions ¢;, 7 =0,... M +1, where @1, ... @) are the usual hat-functions whereas
wo and @pr41 are semi-hat-functions viz;

0, X ¢ [.’Ejfl,fﬂj]
(3) pi(z)=¢4 ==L =z <z<z; , j=1,...M.
Tj41—F

vy <x < x4
1

h



and

< x (z) = Ty ST < Ty
0, r;<z<1”’ YM+1 1 0, 0<z<xyy.

In this way we may write

Vh:awo@hpl)"'a@]\/fﬂ-lL VI?:[gOla"W(pM-‘rl]'
Thus every U € V}, can ve written as U = awpg + v, where vy, € V,?, ie.,
M+1 ~
U =apo+ &g, + - Emp1omi1 = apo+ > Lipi = apo + U,
i=1
where U € V}? , and hence the problem (2) can equivalently be formulated as to find &;,... {41

such that
M+1

1 1
| (oo + 3 eet)eido= [ ordotBes), d=1. M1
0 Pt 0

which can be written as
M1

1 1 1
Z (/ @}%dﬂﬁ)fi:—/ <P6<p;~dx+/ pjdr+Bp;(1), j=1,...M+1,
i=1 0 0 0

or equivalently A{ = b where A = (a;;) is the tridiagonal matrix with entries

ai; =2, Qi1 =a;41;,=-1, i=1,...M, and apm+1,m+1 =1,
ie., )
2 -1 0o 0 ... 0 0
-1 2 -1 0 ... 0 0
1
A=—
h b
0 0O ... 0 -1 2 -1
0 0 ... 0 0 -1 1]
and the unkown £ and the data b are given by
& [ foi prde —a [y ohetde | h+ o
13 Jo p2dx h
=0 | o] |
Em fol o de }}lL
EM+1 i fol Opm+1dr + Bop41(1) | 7 +h

3. Let Vj be the usual finite element space cosisting of continuous piecewise linear functions
satisfying the boundary condition v = 0 on 9. The ¢G(1) method is: Find U € V}, such that

(VU, Vo) + (U,v) = (f,v) Yv €V,

Making the “Ansatz” U(x) = 2?21 &iwi(x), where ¢; are the standard basis functions, we obtain
the system of equations

4
Zgi(/VSDi~V(de$+/(,Di<pjd$):/f(pjdw’ j=1,....4,
i=1 a Q Q

or, in matrix form,

(5+M)§ =F,
where S;; = (V;, V;) is the stiffness matrix, M;; = (¢, ¢;) is the mass matrix, and F; = (f, ¢;)
is the load vector.
We first compute the mass and stiffness amtrix for the reference triangle 7. The local basis
functions are



o1(x1, 2) 1*%*%7 W’l(ﬂflwz):*% { i }7
p2(x1,22) = %7 Voo(z1,x2) = % [ (1) } )
¢3(z1,22) = %27 Vos(x1,22) = % { (1) } .

Hence, with |T| = [, dz = h?/2,
h2

1 1—12
my1 = (¢1,01) = / ¢t dr = hz/ / (1 — 21 — 22)* dz1dry = 12
T o Jo

2
811 = (V¢1,V¢1) = / |V¢1|2 dx = ﬁ|T| =1.
T
Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

3 2 2
_ oo, T NRC I Ul (S W U
miy = (61,61) = /Tczsldx =5 ;@@) ==(0+3+7) =13

where &; are the midpoins of the edges. Similarly we can compute the other elements and obtain

2 1 2 -1 -1
m=g; |12 1], s=g|-1 1 0
11 2 -1 0 1

We can now assemble the global matrices M and S from the local ones m and s:

8

My = Myy = 8mag = Ehz, S11 = Saq = 8s22 =4,

Mg = Mz = Moy = M3y = 2myo = T12h2’ S12 = 513 = S24 = S34 = 2812 = —1,
My =2ma3 = %h27 S14 = 2893 = 0,

Msy = M3z = 4mqy = %hz, Sao = S33 = 4s11 = 4,

Moz =0, Sa3 = 0.

The remaining matrix elements are obtained by symmetry M;; = Mj;, S;; = Sj;. Hence,

8 1 1 1 4 -1 -1 0
2|11 4 0 1 -1 4 0 -1
M*510417S*—104—1
11 1 8 0 -1 -1 4

4. We multiply the differential equation by a test function v € H} = {v : ||v||+|]v'|| < o0, v(0) =
0} and integrate over I. Using partial integration and the boundary conditions we get the following
variational problem: Find u € Hg(I) such that

(4) /(u’v’ + zu'v 4+ w) = /va, Vv e HY(I).

I
A Finite Element Method with ¢G(1) reads as follows: Find U € V}? such that

(5)

where

/I(U'v'+1:U'v+Uv):/va, VUGV;?CH&(I),

V0 = {v : v is piecewise linear and continuous in a partition of I, v(0)
3



Now let e = u — U, then (4)-(5) gives that

(6) /(e’v’ +zev+ev) =0, YoecVP, (Galerkin Ortogonalitet).
I

We note that using e(0) = =0, we get

Lfo_ 1 [,
(7) /xee—/dx Qme)\o 5/16—2/16,

Further, using Poincare inequality we have
el < [le']I*.

A priori error estimate: We use (6) and (7) to get
1 1
||6/H%2(1) +=llellz, = /(e’e’ + —ee) = /(e'e' +ze'e + ee)
2 I 2 I
- / (¢/u—UY + 2t~ )+ efu— V) = {v = U~ mpu i(6)}
I
= / (e’(u —mpu) + xe' (u — mhu) + e(u — ’/T]—ﬂl,))
I

< N = mpu)llll€’l} + fluw = maulllle’]] + [lu = mnul el
< A{lI(u = mpw)' || + V2w — mhul el
< Cofl[pa" || + V2/[R*d" |} el 12
this gives that
lellz < 26 {|ha"|| + V2|IR%" | }.
which is the a priori error estimate.
A posteriori error estimate:

€30+ el = [ (€€ + gee) = [ +aceteo)
_ /I((u UV 4 a(u—Ue+ (u—U)e) = {v=c in (4)}
(8) / fe— / (U'¢ + U + Ue) = {v = e in (6)}
/f (e — mhe) / (U’(e — mhe) +aU' (e — mpe) + Ule — ﬂhe)>

= {P.I. on each subinterval} = /R(U)(e — mhe),
I

where R(U) := f4+U" —2U'—U = f—zU’ - U, (for approximation with piecewise linears, U = 0,
on each subinterval). Thus (5) implies that

€0+ el < IRR@YIIA (e = mae)l| < BRI < SO2NBRWIZ + 3B
where C; is an interpolation constant, and hence we have with || - || = || - [|z,(s) that

lellzr < Cil AR(U)]-
5. See the Book and/or Lecture Notes.
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