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Mathematic Chalmers & GU
TMA37T2/MMGS800: Partial Differential Equations, 2012-06-02, kl 8:30-12:30 V Halls

Telephone: Adam Wojciechowski: 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p- For GU studentsG:15-24p, VG: 25p-
For solutions and gradings information see the couse diary in:

http:/ fwww.math.chalmers.se/Math/Grundutb/CTH /tma372/1112/index. html

1. Counsider the initial value problem: 4(t) + auw(t) =0, t>0, u(0)=ug, a >0, {constant).
Assuine a constant time step k and verify the iterative formulas for dG{0) and dG(1) approxima-

tions U and U respectively: i.e.
1 y» - 1—ak/2\n
Un = (1+ak) o, U"‘(Hak/z) vo-

2. Prove an a priori and an a posteriori error estimate for the ¢G(1) finite element method for
—u"(z) + zu'(z) +u(z) = flz), O0<z<l, u{0) = u(l) =0,
in the energy norm ||v||g with |jv||% = ||'u|§%2(!) + ||v’||2L2“).
3. Consider the Dirichlet boundary value problem
~V - (a(@)Vu) = flz), zeQcR? u =0, for z € 80.

Assume that ¢p and ¢; are constants such that ¢p < a{z) < ¢, Vz € Qandlet U = E::YA ajw; ()
be a Galerkin approximation of u in a finite dimensional subspace M of H}(£2). Prove the a priori
error estimate below and specify C' as best you can

s = Ullyeon < C nf [hs = x]

H ()

4. Formulate the ¢G(1) Galerkin finjte element method for the Dirichlet boundary value problem
—Autu=f zefl w=0, =z d,

on a smooth domain £2. Write the matrices for the resulting equation system using the partition
below (see fig.) with the nodes at Ny, Ny, N3, Ny and N5 and a uniform mesh size A.

Hint: You may first compute the matrices for the reference triangle-element 7°.
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5. Prove the Poincare’ inequality in a convex domain 2 € B?: Thereis a constant C' depending in
§2 such that for all v € HE{), (all L? functions v with Vv € L? and v = 0 at the boundary 80):

1/2
vaiiz(g} < CHV"UH%?(Q), whore  ||wlig2q) = (fn |w|? dx) )
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1. See the Beok and/or Lecture Notes.

2. We multiply the differential equation by a test function v € H} = {v : |j»|} +{|v'{| < o0, ©(0) =
0} and integrate over I, Using partial integration and the boundary conditions we get the following
variational problem: Find w € H{I) such that

(1) /1 (w'v' + zu'v) = ]I Ju, Ywe H(I).

A Finite Element Method with cG(1) reads as follows: Find U € V¥ such that
(2) -/I(U’v’ +zU'v + Uv) = fjfv, Yo e VP o Hi(D),
where

VP = {v: v is piecewise linear and continuous in a partition of I, v(0) = v{1) = 0}.

Now let e = uw— U, then (1)-(2) gives that
(3) / (e +xe'v tev) =0, YveV, (Galerkin Ortogonalitet).
I

We note that using e(0) = €(1) = 0, we get

1 d 1 1 1
4 o & 2 . © 21_7‘/‘2:_ﬁf2
(4) /]wee 2/;9352{6} 2{xe)|0 5 !e 5 Ie,
Further, using Poincare inequality we have
fledl® < fe'li®.

A priori error estimate: We use (3} and {(4) to get
2 1 2 Ly 1 () !
le'llZ, e + "2‘E|€HL2 = ](ee + §ee): I(ee + ze’e + ee)

= f; (e’(u —UY +ze'(u—-U)+elu— U)) = {v="U —mu i(3)}

= /I (e’(u — wpu) + we'(u -~ mpu) + efu— whu})
< N — maud el + Hu — mrul €] + llu — maul el
< {lu — )| + V2l mhuf elian
< Cif i} -+ V20102 Hlell
this gives that
fleflim < 20:{ I || + V2% ).

which is the a priori error estimate.



A posteriori error estimate:
1Ty + glelt, = [+ gee) = [(+ et
= [0y +atu—UYes w-U)e) = {v=c ia (1)}
{5) = /Ife - /I(U’e’ +all'e +Ue) = {v=me in (3)}
= fjf(e — mhe) - ff (U’(e —mpe) + U/ (e — mpe) + Ule — mle})
— {P.I. on each subinterval} = /I R(U)e — mhe),

where R(U) = f+U" —gll' - U = f—gU’ U, (lor approximation with piecewise linears, U =0,
on each subinterval). Thus (5) implies that

1 1 1
le'lZa0n + 5 ez, < IRR@)HE (e~ me)l| < C RNl < SCZIRRTI + CLCH PAeE

where C; is an interpolation constant, and hence we have with || - =i - [z, sy that

llellmr < CellRR{UN.

3. Recall the continuous and approximate weak formulations:

(6) {aVu, Vo) = (f,v)}, VYoe HHO),
and
(7 (aVU,Vv) = (fiv), Wve M,

respectively, so that
(8) (a¥V(u—U),Vv) =0, Yv e M.
We may write
u~U=uv—x-1+x-"U,
where y is an arbitrary element of M, it follows that
(aV(u—U),V(u-0)) =(Vie—-U),V(iu—x))
(9) LV (w = U - f — Xl e
< allw = Ull gz snile = xdlaz o

on using (3), Schwarz’s inequality and the boundedness of a. Also, from the boundedness condition
on a, we have that

(10) (a¥(u~U), V(u—0)) = eollu~ Ul sy
Combining (4) and (5) gives

€1
= Ullgay < ;Hu— Xz 0)-
Since x is an arbitrary element of M, we obtain the result.
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4. Let V be the linear function space defined hy
Vi={v:v is continuous in £2, v =0, on O0}.
Multiplying the differential equation by v € V and integrating over £ we get that
—(Aw,v) + (u,v) = (f,2), YveV.
Now using Green’s formula we have that

—{Au, Vv) = (Vu, Vu) — / (- Vu)vds = (Vu, Vo), Yo e V.
80

Thus, since v = 0 on 44, the variational formulation is:
(Vu, Vo) + {(u,v) = {f,v), Yo e V.

Let now V), be the usual finite element space consisting of continuous piecewise linear functions,
on the given partition {triangulation), satisfying the boundary condition v = 0 on 9%

Vi i= {v: v is continuous piecewise linear in {1, v =10, on 8{}.
The ¢G{1) method is: Find UV € V}, such that
(VU, V) + (U, v) = (f,v) Vu € Vg,

Making the “Ansatz” U(z) = '_):‘?Zl &ip; (@), where ; are the standard basis functions, we obtain
the system of equations

5
Zgj(fVWi‘VHDjdm+/§9i§0jdm)=/_f(pidx! i=1,2,3,4,5
=1 Q ¢ a

or, in matrix form,

(S+ M)t =F,
where Si; = (Vips, Vp;) is the stiffness matrix, M;; = (@, ¢;) is the mass matrix, and Fj = {f,¢;)
is the load vector.

We first compute the mass and stiffness matrix for the reference triangle 7. The local basis
functions are

1
¢1($1,$2):1—%—%, ‘74151(31,332):*"5[ i ],
4 1
¢2($l:$2) = i};) V¢2($1}$2) = H [ (]j :I 4
1
dalwy, 22) = %, Va(xy, 22) = i [ (1) ] .

Hence, with |7’ = [, dz = h?/2,
1 pl-zg ¥
my1 = {1, 1) = / ¢} dz = h?/ / (1 — 2y — 2z} drydoy = —,
T 0 Jo 12

511 = (V¢1, Vi) = fTIV(jﬁjiz dr = %IT] - 1.

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 {precision
3y

3 2
- _ 2 _B A.2_’_?’2_ 1 1 —h_
m11—(¢1,¢1)mﬁ¢1d$— 3 ;@{mﬂ) B (G+4+4)_ 12°

where &; are the midpoints of the edges. Similarly we can compute the other elements and obtain

22 1 1 2 -1 -1
m:]z%; 1 2 1], s:-1~ -1 1 0
1 1 2 -1 0 1



We can now assemble the global matrices M and S from the local ones m and s:
2

h 1
My = My = Mep = 8rmigp = 8 X — St = Suz = S5 = 8595 = 8 % 58 =4,

12’
h2 hZ
M22:Mr«1d24m11:4><§”—‘?, Sag =8y =4dsy =4x1=4,
1
Myg = Moy = Myq = Mys = 2my3 = —h? S12 = S23 = S3q = S45 = 2612 = —1,

127
Mg = Myy = Mys = May = Mys = Mas =0, S13 = 814 = Si5 = Sog = Sa5 = Sq5 = 0,

The remaining matrix elements are obtained by symmetry My;; = My;, Si; = Sy;. Hence,

8 1 0 0 0 4 -1 0 0 0
2|1 4100 -1 4 =1 0 0
M=z1118 101, S§=| 0-1 4 -1 0
001 41 0 0 -1 4 -1
000 1 8 0 0 0 -1 4

5. See the Book and/for Lecture Notes.

MA




